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ABSTRACT

A new three-dimensional explicit Navier-Stokes procedure has been developed for

computation of turbulent turbomachinery flows. Several numerical strategies and

modelling techniques have been developed and incorporated which enable convergent and

accurate predictions of high Reynolds number flowfields across a wide range of Mach

numbers. These include incorporation of a compressible low Reynolds number form of the

k-e turbulence model in a fully explicit fashion, appropriate stability bound treatment of the

transport turbulence model and other physical and solution parameters, eigenvalue and local

velocity artificial dissipation scalings, a compact flux evaluation procedure and a hybrid

low Reynolds number k-c / algebraic Reynolds stress model.

The derivation of the governing transport equations and the numerical

discretization procedures are provided for three dimensions, although two-dimensional

computations are also considered. A compact central finite difference flux evaluation

scheme, is introduced. This scheme allows for the straightforward application of boundary

conditions often attributed to finite volume formulations, and eliminates the metric

singularity at the interface between solid and periodic boundaries.

Detailed stability and order of magnitude analyses are performed on the discrete

system of seven governing equations. The results of these analyses and corroborative

numerical experiments are provided. Conclusions are drawn concerning the influence of

system rotation and turbulence transport source terms, grid clustering, effective diffusivity,

artificial dissipation, convective acceleration terms, implicit source term treatment and the

coupling of the discrete mean flow equation system to the turbulence model equations on

the stability of the numerical scheme. Notable is the conclusion that, contrary to general

perception, turbulence model source terms themselves do not adversely affect the stability



iv

of the numerical scheme used, for many low Reynolds number forms, provided that certain

constraints are met. Applicability of these results to explicit multigrid and implicit time

marching schemes is discussed.

The highly stretched grids, required to resolve near wall flow physics in high

Reynolds number turbomachinery flow computations, give rise to important artificial

dissipation issues. Accordingly, alternative local velocity and flux Jacobian eigenvalue

scalings are provided for the dissipation operators. It is illustrated that such scalings are

required for convergent and accurate solutions of these flows.

A hybrid k-e / algebraic Reynolds stress model (ARSM) has been developed. This

hybrid approach reconciles the near wall damping provided by the low Reynolds number k-

e model with the high Reynolds number form ARSM. The accuracy of this approach is

validated for a simple shear layer, and the numerical stability of the model is analyzed and

verified.

Two-dimensional results are provided for a supersonic compressor cascade

operating at unique incidence condition and a low-subsonic double circular arc compressor

cascade. Detailed comparison of the numerical solution with experimental results is

provided. Shock structure, boundary layer and wake physics are well predicted, providing

validation of the numerical and turbulence modelling approaches.

Three-dimensional validation is provided by the results of an incompressible

curved duct flow computation, for which wall static pressure and LDA primary and

secondary velocity measurements are available. A high Reynolds number axial rotor flow,

for which extensive experimental data is also available, was computed. This large scale

computation is shown to capture rotational inviscid, blade and endwall boundary layer and
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wake flow physics, including spanwise mixing effects, with good accuracy.

Finally, a backswept transonic centrifugal compressor flow, for which L2F

meridional passage velocity measurements are available, is computed. Such flows are the

most complex that exist in turbomachines. Full Navier-Stokes solutions are presented

which are shown to capture detailed viscous dominated flow features, including tip

clearance and curvature induced and rotation induced secondary motions, with good

accuracy. Relative helicity is used to help interrogate these computational results, and it is

found that this parameter is very useful in providing insight into the secondary motions in

these machines. Results of impeller flowfield calculations using the hybrid model with and

without the influence of system rotation are also provided and interpreted.
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CHAPTER 1

INTRODUCTION

Computation of viscous flows by numerical solution of the Navier-Stokes

equations has become increasingly feasible due to improvements in numerical algorithms,

and to the ever-increasing speed and memory of digital computers. The most up to date

CFD codes available today are capable of calculating steady 3-D viscous flows about entire

vehicles, and even unsteady viscous flows in 3-D turbomachinery stages. However,

despite the rapid advance towards exploiting the power of computers now available, some

serious limitations of these codes have yet to be adequately resolved. Surely the most

profound of these limitations is the lack of accurate, general turbulence models. Secondary

to this, but of much concern, is the role of artificial dissipation in Navier-Stokes

calculations.

The flowfield in all turbomachines is characterized by significant rotational inviscid

phenomena, arising from stagnation enthalpy and pressure gradients due to shaft work,

flow turning and compressibility effects. Consequently, a great deal of the physics in these

machines can be analyzed with inviscid methods. For this reason, inviscid solution

procedures have advanced to the point, and are efficient enough, that they are today used

routinely in turbomachinery design.

Alternatively, viscous flow phenomena play a dominant role in many parameters of

interest to the engineer. Specifically, machine performance parameters such as efficiency,

maximum pressure rise/drop and attainable mass flow rates are strongly influenced by

viscous effects. The developing boundary layers on blade and endwall surfaces give rise to
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losses and blockage. The convection and diffusion of blade row wakes and some

spanwise mixing effects are viscous phenomena which play important roles in multistage

machines. Also of large concern, especially in turbines and centrifugal machines, are

secondary motions which arise due to the turning and rotation of shear layers in these

machines. The direct effect of apparent stresses, due to flowfield turbulence, is a factor in

all turbomachines since Reynolds numbers are characteristically large. The physics of tip

clearance vortices, localized flow reversal, rotating stall, surge and choking are all

intimately tied to viscous flow effects. In order to develop a further understanding of these

phenomena, nothing short of analyses that incorporate the full Reynolds averaged Navier-

Stokes equations are sufficient.

The engineer needs analysis tools which are 1) accurate, 2) versatile, 3) relatively

easy to use on a routine basis, and 4) fast/efficient. Unfortunately, for these very reasons,

the current state of the art does not allow for detailed Navier-Stokes analysis in the

turbomachinery design environment. At present, high Reynolds number, three-

dimensional turbomachinery passage flows have been computed by a number of

researchers using on the order of 105 grid points, but the central memory and CPU run

time requirements for such calculations are large. Also, even grids of this size are not

adequate to provide grid converged, detailed viscous flow predictions. The state of the art

seems to be, rather, the reasonable prediction of global three-dimensional vorticity

distributions at design and off design conditions. Also, in addition to accuracy limitations

imposed by practical grid size constraints, simple turbulence models and the inescapable

presence of artificial dissipation introduce additional inaccuracies.

Pre-processing, including grid generation and flow initialization, can be daunting

and time-consuming tasks for complex turbomachinery configurations. Application of

Navier-Stokes flow solvers themselves generally require an experienced analyst, with
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detailed understanding of the physical models and/or numerical procedures incorporated in

these codes. Lastly, postprocessing large scale solutions can take days of an analyst's time

to extract useful design information. So, in short, Navier-Stokes methodologies currently

fail on several counts, from an engineer's standpoint. For this reason, there is currently a

great deal of research to improve the usefulness of these methods, with emphasis on

turbulence and other physical modeling, incorporation of efficient algorithms and improved

computer architectures, and the use of full scale simulation studies to develop an

understanding of particular physical processes in turbomachines [see recent paper by

Leylek and Wisler (1990), for an good example of this last item)].

The purpose of this thesis is to develop a new explicit, three-dimensional Navier-

Stokes methodology for turbomachinery flowfield prediction. In accordance with the need

to address the items mentioned above, emphasis has been placed on 1) incorporation of a

low Reynolds number two-equation turbulence model in an explicit numerical solution

procedure, 2) comprehensive investigation of the stability of the procedure, including the

influence of various geometric and flowfield parameters on numerical stability, with

emphasis on the turbulence model, 3) investigation of the role of artificial dissipation in the

accuracy and stability of viscous flow computations on highly stretched grids, 4)

simulation of a variety of complex two- and three-dimensional turbomachinery flows,

across a wide range of Mach numbers, including a transonic centrifugal compressor, with

the goal of using the flow solution to provide a detailed understanding of the viscous

physical mechanisms in these machines.

In three-dimensional Navier-Stokes calculations of steady state turbomachinery

flowfields, noth explicit and implicit time-marching procedures have been implemented by

a number of researchers. As mentioned above, high Reynolds number turbomachinery

passage flows have been computed by a number of researchers using on the order of 105
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grid points [See recent publications by Bansod and Rhie (1990), Chima and Yokota

(1988), Choi and Knight (1989), Walker and Dawes (1989), Hah and Wennerstrom

(1990), Hobson and Lakshminarayana (1990), Kirtley et al. (1990), Leylek and Wisler

(1990), Moore and Moore (1990), Subramaniam (1989), Warfield and Lakshminarayana

(1989), for example].

The comparative performance of implicit and explicit numerical schemes, in three-

dimensional steady flow computations is not definitive. Both explicit and implicit

procedures generally incorporate local timestepping, where estimated optimum timesteps

are used. For explicit schemes, this corresponds to operational Courant-Friedrichs-Lewy

(1928), or CFL, numbers just below that allowed for numerical stability (- 2.8 for

standard four-stage Runge-Kutta schemes). In multidimensional problems, implicit time-

marching schemes are generally factored in nature, and factorization gives rise to optimum

local CFL numbers of the same order (in three-dimensions, typical optimum CFL numbers

of approximately 5 have been reported for LU schemes [Yokota and Caughey (1987)] and

approximately 10 for ADI schemes [Merkle (1988), for example]). Since local timesteps

are monotonically related to local distances between grid points, the performance of both

implicit and explicit schemes suffer on the highly clustered grids required for high

Reynolds number flow computations.

There are several other considerations involved in the choice between implicit and

explicit schemes, including the availability of steady state acceleration schemes. Multigrid

procedures have been used for explicit Euler calculations with great success (Ni (1982), for

example) and with some success in implicit computations [Yokota and Caughey (1987), for

example]. Implicit residual smoothing (IRS) schemes can provide approximately a factor

of two in CPU times savings in explicit procedures, but the performance of both multigrid

and IRS schemes are very sensitive to the grid stretching required in visceus flow
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computations[see Radespiel et al. (1990)].

Explicit algorithms, and some implicit algorithms, are fully vectorizable, giving

rise to rapid (CPU seconds)/(grid point * iteration) performance on advanced vector

computer architectures. Explicit procedures can be more easily rendered close to 100 %

parallelizable, so application to the massively parallel architectures, which are now

emerging, is appropriate. Modified implicit solvers, though, have recently been shown

[Wake and Egolf (1991))], to provide efficient execution rates on such machines, as well.

Lastly, the nature of the discrete equation set being solved should be considered in

choosing a particular numerical scheme (or a temporal discretization procedure for certain

terms). Specifically, implicit treatment may improve damping properties when applied to

discrete transport equations with source terms. In summary, it is currently not clear

whether implicit or explicit procedures are uniformly more efficient in viscous three-

dimensional turbomachinery computations.

An explicit numerical procedure of the Runge-Kutta class has been chosen in this

thesis. This scheme is preferred in this work for several reasons. First, the numerical

formulation is somewhat simpler than for implicit schemes, which is helpful from a code

development standpoint, when complications due to additional physical modelling and

application to turbomachinery configurations is required. Second, Runge-Kutta schemes

are more efficient [Jameson et al. (1981)] and naturally less dissipative than other explicit

schemes (central and upwind difference; see Figure 3.2 and accompanying discussion),

allowing the user to control more precisely levels of artificial dissipation which may corrupt

solution accuracy. Furthermore, a number of researchers have successfully applied Runge-

Kutta procedures in viscous three-dimensional turbomachinery computations [see Chima

and Yokota (1988), Kirtley et al. (1990), Subramaniam (1989) for example]. Lastly, as
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will be shown, the procedures developed in this thesis have been very successful, which in

retrospect, ultimately justifies their choice.

Due to the wide range of length scales associated with turbulent motions in high

Reynolds number turbomachinery flows, models which require closure approximations for

the time averaged governing equations will be required for computation of these flows for

many years.

Closure models can be broadly classified into first order and second order

closures. In first order closures, the Reynolds stresses (second order correlations) are

modelled as functions of gradients of the mean velocity field. Models which fall under this

classification are commonly referred to as eddy viscosity models, and include algebraic and

one-equation mixing length models, and two-equation models. In second order closures,

the transport equations for the Reynolds stresses themselves are treated, where the third

order correlations are expressed in terms of mean flow quantities and the Reynolds stresses

themselves. Models which fall under this classification include algebraic Reynolds stress

models (ARSM) and full Reynolds stress models (FRSM).

The first and simplest of turbulence models is the mixing length model of Prandtl

(1925). This model assumes that characteristic time scales of turbulent transport by eddy

motion are of the same order as time scales of the local mean flow. In simple shear layers,

where only one mean strain rate and Reynolds shear stress component are dominant, the

model takes the following form:

-pu'Ju = t-U = p L x [1.1]
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where an eddy viscosity has been introduced, following Boussinesq (1877), who proposed

that the turbulent shear stresses can be modelled as being linearly related to mean strain rate

as molecular stresses are in a Newtonian fluid. In equation [1.1], L, represents a local

"mixing length," which must be prescribed by a combination of analytical and empirical

results, and C is an empirical constant. The accuracy of mixing length models depend on

the accuracy of the mixing length prescription. In simple two-dimensional shear layers,

local mixing length distributions are well established, but the evaluation of L becomes

difficult in non-simple shear layers, most especially in internal flows such as

turbomachinery. Also, the mean strain only provides a good representation of the

turbulence time scale when the Reynolds stress production and dissipation are

approximately in balance. Additionally, transport and history effects on local turbulence

structure are neglected in mixing length models. Regardless of these shortcomings,

extensions of equation [ 1.1] to multidimensional problems have been very popular. In

such approaches, a tensor form extension of the Boussinesq approximation is employed:

-Puiuj = 2}JgtSij - pk i  [1.2]

where Sij is the mean strain rate tensor, and k is the turbulent kinetic energy. The very

popular two-layer model of Baldwin and Lomax (1978) falls in this class, where the last

term in equation [ 1.2] is neglected, and the eddy viscosity is algebraically related to the

mixing length in a fashion analogous to equation [ 1.1].

If the turbulence kinetic energy, k, is known locally, then time scale arguments

similar to those justifying the mixing length hypothesis yield:

g~tt = C~oklt2L [1.3]



where now k1/2 is taken as a velocity scale representative of the turbulence eddy transport.

In one equation models, a differential transport equation is solved for k, but the mixing

length is still prescribed algebraically. These models have been popular in external flow

computations, where mixing length prescriptions are not as ambiguous as in internal flows

(King (1987), for example).

It was mentioned that the specification of a local mixing length is difficult in

turbomachinery flows where shear layers can be highly three dimensional, local flow

reversal can exist (in which case equation [ 1.1] provides that -u'Iu 2 -40 at locations within
U -- 0

the separation zone where N2 ), and solid boundary proximity can be ambiguous.

For these reasons, two-equation models, which solve conceptually a transport equation for

the turbulence length scale, have been used extensively. A variety of two-equation models

exist, all of them have in common that the characteristic local turbulence velocity and length

scales, k1/2, L, can be extracted from the two transport variables. The most well known of

these is the k-e model, which is based on the pioneering work of a number of researchers

including Jones (1971) and Launder and Spalding (1974). The underlying assumption of
RT __EIL

these models, is that, at high enough local turbulence Reynolds number, v , the

rate of change of local turbulence kinetic energy is equal to the energy dissipated in the

small scales (local equilibrium assumption). Since the dynamics of the large scale

turbulence motions can be characterized by velocity and length scales, k1/2 and L,

dimensional analysis provides that

e = e(k,L) = C k/
L [1.41

where a t a i
where the dissipation rate is defined here as al axJ, which is the homogeneous
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component of the total dissipation rate (see discussion in Chapter 2). Accordingly, we

L = Ck'have E, and invoking equation [1.3], the Prandtl-Kolmogorov relation for eddy

viscosity becomes:

It, = c[1.51

where C. is an empirical constant.

Launder and Spalding (1974) provided the so-called standard high Reynolds

number k-s model and recommended empirically obtained values for the modelling

constants which appear. In order to account for near wall effects, where the high Reynolds

number form of the k and e equations are not valid, Launder and Spalding (1974)

introduced wall functions which incorporate assumed near wall log-law velocity profiles.

Accordingly, wall functions are applied at the first grid point off of the wall which, for

consistency, should lie in the inertial sublayer (nominally 30 < Y+2 < 300). Boundary

conditions on k and e which assume local equilibrium (production of k = dissipation) are

also applied at this location. Wall functions have the advantage that significant computer

resource savings can be realized since near wall physics need not be resolved explicitly.

This has kept wall functions popular, even in state-of-the-art three-dimensional

turbomachinery flow solvers (Leylek and Wisler (1990), Bansod and Rhie (1990), for

example).

However, since wall functions rely on the assumption of a locally logarithmic

velocity distribution and the local equilibrium of the turbulence, their accurate applicability

is severely restricted. Specifically, in locally separated flows, no log-law region exists,

and in three-dimensional flows, secondary motions (say spanwise flows) often extend well
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into the inner layer, giving rise to skewed boundary layer profiles. Additionally, implicit in

the use of wall functions is that blade boundary layers are fully turbulent. Lastly,

application of wall functions in turbomachinery configurations gives rise to several

ambiguities, including leading edge and blade-endwall intersection treatment and wake

centerline treatment. For these reasons, the wall function approach is not adopted in the

present work.

Low Reynolds number forms of the k-e model directly model near-wall influences

on the turbulence structure by modifying the k and e equations. Specifically, they are

distinguished from high Reynolds number forms in that several modelling parameters

which account for the proximity of solid boundaries are accounted for (see Patel et al.

(1985) for example). Specifically, molecular viscosity is retained in the diffusion terms,

model constants in the dissipation rate equation are factored with near wall modification

functions, and in some cases near wall source functions are incorporated to model directly

the behavior of the dissipation rate near the wall (refer to equations [2.10] - [2.12]). The

eddy viscosity, and thereby conceptually the Reynolds stresses, are also damped as the

wall is approached in a fashion consistent with Van Driest (1956) damping. Specifically,

the Prandtl-Kolmogorov relation is modified as:

9~t = fgCgp k2.6

fCpE [1.6]

where f. provides appropriate exponential damping as the wall is approached.

Low Reynolds number models have the advantage that near wall boundary layer

skew due to secondary motions can be resolved. This is important in flows such as

centrifugal compressors, where significant cross flow velocity components can exist very
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close to the wall (refer to results in Chapter 6). These models can be applied in an

unambiguous fashion in complex geometries (all that is needed is an appropriate wall

proximity length scale prescription; see Chapter 2). This is important especially at

turbomachinery boundaries such as the interface between rotating and stationary portions of

a hub, a stationary blade adjacent to a rotating (in the relative frame) shroud, and the

interface between solid and periodic boundaries, such as at leading and trailing edges and

tip clearance gaps. In the opinion of the author, the use of wall functions along these

boundaries would be difficult and inappropriate. Lastly, low Reynolds number k-, models

can model the influence of freestream turbulence on turbulence transition (Jones and

Launder (1972) for example), albeit only if the modelled flow is such that transition is

strongly influenced by local freestream intensity.

The improvements in prediction accuracy which can be obtained using two-

equation models over mixing length models is well documented. For example, the k-e

model has been shown to provide better predictions than algebraic models for flows with

adverse nressure gradient [Kirtley and Lakshminarayana (1985)] and for 2-D shock-

boundary layer flow on curved surfaces [Degrez and VanDromme (1985)]. However,

there are still well acknowledged deficiencies [see Lakshminarayana (1986] and Speziale

(1989), for example) associated with the use of two-equation models. Such models are

eddy viscosity models, and as such invoke the Boussinesq approximation which implies

that the Reynolds stress tensor is aligned with the mean strain rate tensor. Accordingly,

eddy viscosity models cannot predict secondary flows of the second kind, which are

induced by Reynolds intensity anisotropies, and are present even in unidirectional flows

(see further discussion in Chapter 5, Section 1). Also, eddy viscosity models cannot

account for component Reynolds stress relaxation/amplification effects; instead they predict

instantaneous return to isotropy in the absence of local mean strain. Another criticism of

these models, is that unless empirically modified, they cannot account for the influence of
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local streamline curvature and system rotation on local turbulence structure.

Full Reynolds stress models (FRSM) of the form proposed by Launder et al.

(1975):

a a~k r +aXI uuk- - UJUkW-

+ -CIO/ - j2 ijk) -' pij - ;Pij)+i.w}+ {-3iE} [1.7]

or:

Convection = (Diffusion, Dij) + (Production by mean strain rate, Pij)

+ (Pressure strain) + (Dissipation)

can in principle account for the eddy viscosity modelling deficiencies alluded to above. In

these closures, the modelled transport equations for the six individual Reynolds stress

components, equation [1.7], are solved, along with an equation for turbulence energy

dissipation rate. Various FRSM have been shown to account correctly for Reynolds stress

anisotropy phenomena and amplification/relaxation effects, and account intrinsically for

curvature and rotation effects since fluctuating momentum balance information is

incorporated in the exact equations (see Gibson and Rodi (1978) and Launder et al. (1987)

for example). Currently, however, the use of FRS closures has been limited to simple

flows wherein reduced forms of the models and less computationally intensive numerical

schemes are applicable. This is due to the computational intensity of solving seven

transport equations, each of which contain complicated source terms, in addition to the

mean flow equations.
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Rodi (1976) proposed an approximation which reduces the modelled

incompressible full Reynolds stress (FRS) equations to algebraic form. Specifically, he

presented the FRSM of Launder et al. (1975), equation [1.7], and proposed the following

approximation.

Du'ju* 1-1'iu u Dk u pui
kD k"- W k [1.8]

where Dk represents the viscous diffusion term in the turbulence kinetic energy equation

(1/2 the trace of equation [1.7]). This approximation assumes that the convective and

diffusive transport of individual Reynolds stress components are locally proportional to

transport of turbulent kinetic energy, the constant of proportionality being the local ratio of

the Reynolds stress component to the turbulent kinetic energy. This simplification reduces

the system of six non-linear Reynolds stress partial differential equations to a system of six

non-linear algebraic equations in the six unknown stresses. The advantage to such an

approach is that solution of the algebraic systems should be less computationally intensive,

though solution of a 6 x 6 system of non-linear algebraic equations at every grid point, at

every iteration, can be computationally intensive. Also, transport equations for k and e

must be solved in order to provide the values which appear in equation [1.8].

In this thesis, a low Reynolds number form of the k-e model is used. The

particular model chosen is a three-dimensional, compressible extension to a model

proposed by Chien (1982). This model was one of four low Reynolds number models

deemed to perform well in the prediction of a variety shear layer flows, in a recent review

article by Patel et al. (1985). The formulation for this model is presented in equations

[2.10] - [2.12]. Also, a hybrid low Reynolds number k-e/high Reynolds number ARS

model has been developed and applied. One of the goals of this thesis work has been to
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compute the flow in a centrifugal compressor. It was felt that for adequate resolution of

the strong secondary motions in such machines, a low Reynolds number k-c model would

be significantly more appropriate than a mixing length model or a high Reynolds number

form with wall functions. Application of the model adopted to the complex geometries in

impellers, and all turbomachinery applications, is relatively straightforward. Additionally,

as second order closures are adopted in the code, transport equations for k and/or e need to

be solved anyway, so the implementation, stability and application results presented in this

thesis are directly relevant to incorporation of ARS and FRS closures.

The flow in centrifugal compressors and pumps provide one of the most

challenging problems available to internal flow aerodynamicists. The complex three-

dimensional physics in all of these machines has defied accurate prediction to date. The

real flow in an impeller is drastically different from the desirable inviscid flow arising from

the influence of curvature and rotation on rotor streamtubes in the absence of shear. A

dominant boundary layer separation, or "wake" appears in many radial and mixed flow

centrifugals, which alters strikingly the flow structure in the radial section of the impeller.

A variety of strong secondary flows develop and interact due to the influence of centrifugal

and coriolis forces on blade and endwall shear layers. Curvature and rotation also

influence local turbulence intensity levels, thereby affecting the structure of developing

boundary layers. Tip clearance flows and unsteady impeller-diffuser interactions introduce

additional anomalies to an already complex passage flow. Additionally, there can be

compressibility effects, even shock surfaces in the passage. Regions of flow reversal can

be present at off design operation. In short, the complete physics involved are highly

complex, and therefore, Navier-Stokes analyses to date have provided only qualitative

accuracy.

Full Navier-Stokes procedures have been implemented to compute centrifugal
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compressor flows by several researchers recently (refer to Dawes (1988), Choi and Knight

(1989), Goto (1990), Bansod and Rhie (1990), Hah and Krain (1989), Dorney and Davis

(1990)). Most of these researchers have extracted qualitative comparison with

experimentally obtained pressure distributions, and typically provide reasonable

performance parameter trends (with varying mass flow rate or tip clearance gap for

instance). Very popular is the use of solution contour plots of meridional velocity and

relative stagnation pressure, and cross flow velocity vector plots. Such numerical

simulation results provide insight into the variety of complex flow phenomena which exist

in these machines, and substantiate the ability of Navier-Stokes procedures to qualitatively

model these physics. However, direct comparison of predicted mean internal passage flow

properties to measured results are consistently not provided, since quantitatively,

predictions are generally poor. Additionally, only two of these works (Choi and Knight

(1989), Hah and Krain (1989)) have adopted the degree of turbulence modelling

complexity of a low Reynolds number two-equation model.

In the last chapter of this thesis, the results and interpretation of a transonic

impeller computation is provided. Direct comparisons of predicted meridional velocities are

made with L2F measurements due to Krain (1988). Relative helicity density is introduced

as an excellent parameter for interpretation of secondary flow development. Extensive

physical interpretation is provided for a solution in which the low Reynolds number k-e

model is used. Additionally, results using a hybrid low Reynolds number k-r.ARS model

are presented which indicate that although meridional mean flow is not significantly

influenced by the modelling choice, cross flows, wall shear stress and machine

performance parameters are.

The choice of an explicit numerical procedure in conjunction with a low Reynolds

number k-e model is not without its consequences. Specifically, nearly as well
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documented as the accuracy advantages of using low Reynolds number form k-e models

over algebraic eddy viscosity models, are the perceived numerical disadvantages, and

thereby the unpopularity, of implementing two-equation models in time-marching Navier-

Stokes procedures (Coakley (1983), for example). For these reasons, algebraic eddy

viscosity models are often used to approximate the apparent stresses in CFD codes, since

these models have little computational overhead and do not adversely affect the stability of

the scheme. When transport models are used, the numerical stiffness associated with

implicit and explicit computation of the Navier-Stokes and turbulence transport equations

on the highly stretched grids required by low Reynolds number two-equation models has

prompted researchers to adopt a variety of strategies to obtain convergent solutions. Wall

functions (Eliasson (1988), Grasso and Speziale (1989), Holmes and Connell (1989) for

instance), require less near wall grid clustering and bridge much of the inner region of the

boundary layer, where turbulence source terms are large. Liu (1987) has used a hybrid

approach, where an algebraic Van-Driest damping model is used to model the near-wall

physics, thereby also relieving these two stability constraints. Pointwise implicit source

term treatment has been used in implicit (Coakley (1983), Sahu and Danberg (1986),

Martelli and Michelassi (1990)) and explicit (Liu (1987), Gerolymos (1990), Mavriplis and

Martinelli (1991)) codes. Common to all of these approaches is their success in predicting

a variety of complex turbulent flows in convergent fashion. In addition, most of these

researchers cite the need for ad hoc stabilization procedures in the early stages of iteration

where source terms can be very large if the flow is initialized in a simple fashion.

The above considerations have motivated the comprehensive stability investigation

provided in Chapter 3 of this thesis, in which the stability of the turbulence model is one of

the emphasized items. The author is familiar with two attempts in the literature to analyze

the stability of tht discrete k-e equations. Liu (1987), analyzed the 2D "uncoupled" (see

terminology discussion in Chapter 3), two-equation k-e system and provided an expression
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for a local timestep based on implicit source term treatment using a 2-stage Runge-Kutta

procedure. Eliasson (1988) provided a VonNeumann analysis of the coupled five equation

incompressible 2D Navier-Stokes/k-e system. In his work, the influence of turbulence

production on the stability of the scheme was neglected. Eliasson thereby obtained the

result that the remaining dissipation terms effectively provide damping to the scheme. He

reconciles this result with the observation that it is not necessary to add fourth order

artificial dissipation to the k or e equations, which has also been the experience of this

author. Though this neglect of production with respect to dissipation in the stability

analysis may be useful when using wall functions, as Eliasson did, it was felt that it would

not be appropriate to adopt this simplification in the present work. In Chapter 3, much

more general stability results are obtained than by these authors, and numerical verification

studies are performed to corroborate these analyses.

The explicit flow solver used for the numerical studies included in this thesis was

written and developed by the author and is described briefly here. The code is a structured

H-grid, explicit, compressible, 3D, full Navier-Stokes flow solver which incorporates a

compressible low Reynolds number k-e model. Inlet characteristic boundary conditions,

system rotation and periodic boundaries are available to accommodate turbomachinery

applications. Euler and periodic boundaries consistent with either rectilinear or annular

geometries are available. The modified eigenvalue and velocity artificial dissipation

scalings presented in Chapter 3 are implemented. An algebraic Reynolds stress model

which may be hybrid with the low Reynolds number k-e model is available in the code.

Code performance issues are discussed in Chapter 3.

In Chapter 2, the governing equations for the mean flow and turbulence models are

provided. Chapter 3 provides details of the spatial and temporal discretization procedures

used. This includes the introduction of a compact central finite difference flux evaluation
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scheme which eliminates the metric singularity at the interface between solid and periodic

boundaries, often attributed to finite difference procedures. Also included in Chapter 3 are

extensive analyses and discussion of artificial dissipation issues which arise in the high

Reynolds number viscous flow computations of interest in this thesis. The motivation and

stability implications of numerically coupling the turbulence transport equations to the mean

flow equations are then analyzed and discussed. Next, a vector VonNeumann analysis of

the seven discrete, numerically coupled governing equations is undertaken, and some local

stability results obtained. Order of magnitude arguments and numerical verification

experiments are applied to these results from which some conclusions of relevance to the

engineering analyst are drawn. ARSM numerical implementation and stability results, as

well as overall code performance issues are also presented in Chapter 3.

Chapter 4 provides turbulence modelling validation and two-dimensional cascade

computatior'. Results and interpretation are included for a supersonic compressor cascade

operating at unique incidence, and a low subsonic double-circular-arc cascade with mean

flow reversal. The flowfields within each of these have been investigated experimentally,

and these results are used for comparison. In Chapter 5, the three-dimensional

methodology is applied to a turbulent duct flow for which CFD validation-quality

experimental data is available. Also, results of a large scale three-dimensional compressor

rotor flow computation are presented. This Navier-Stokes solution is compared with a

variety of rotor and wake flowfield measurements, and extensive interpretation is provided.

As mentioned above, Chapter 6 details the computation of a centrifugal compressor

flowfield using the present method.
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Chapter 7 summarizes the conclusions arrived at in this thesis. The range and

applicability of the methodologies presented are also discussed there, as are limitations and

suggestions for further study.
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CHAPTER 2

THEORETICAL FORMULATION

2.1 Favre Averaged Governing Equations

In the present development, the density-weighted time-averaging developed by

Favre (1965) is used. This decomposition has advantages in flow computations with

variable density (see Jones (1980)). Specifically, the averaged governing equations are of

simpler form and the physical interpretation of terms in the equations is clearer than when

conventional time averaging is used. Reynolds (time) averaging, defined for a scalar, 0, as

-) ' - im I )ds0 = 0 +0¢' ,whereo= t--00 t
[2.1]

is used for pressure, density, molecular stress tensor and molecular heat flux vector. Favre

(density-weighted time) averaging, defined for scalar, 4), as

0 =0+40" ,whereo=-
P [2.2]

is used for velocity components, internal energy, turbulent kinetic energy and turbulent

energy dissipation rate.

2.1.1 Mean Flow Equations

Applying the density-weighted time-averaging procedure to the continuity,

momentum and energy equations allows one to write the five mean flow equations in

conservation form, in cartesian tensor notation, as:
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+ W-) Ci + 5-XiTij PEijkDjlkhmnO1Xm "p2 6ijk()jik

a(peR) a

at u i [2.3]

where the effective stress tensor and effective heat flux vector are given by:

Tij = tlij - PUiU j ,

qi =qii+pu~e [2.4]

with:

j= axj - 3aXk

qil = - 'Pr5xi. [2.5]

All velocity components in equations [2.3] - [2.5] are relative to a reference frame

rotating with constant angular velocity, (oi (s0). In the following developments, 0 is

taken, without loss of generality, to be coincident with the x-axis. The particular choice of

pW2 22energy variable, peR = pe + "W2/2 - PW r2/2 , has the advantage that for the inviscid only

problem, the steady state converged energy equation reduces to a statement of conservation

of rothalpy, I, along streamlines. The apparent body force terms, which arise in the

momentum equations due to system rotation, are linear in relative velocity, and therefore do

not introduce additional stresses due to the density- weighted time-averaging procedure. In
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the derivation of equation [2.3], it has been assumed that the time averaged molecular stress

tensor and the molecular heat flux vector are equivalent to their density-weighted time

averaged values. This approximation should be a good one since, compared to turbulent

diffusion, molecular diffusion is only significant near solid boundaries, where local Mach

number and hence density fluctuations are small. For the compressible flows considered

in this thesis, a perfect gas equation of state is provided as P = PRT, where

T C = R - + . It is further noted that by definition of the energy transport

eOR e + W2  0o2r2

variable used, 2 2 , Favre averaging gives rise to a turbulence energy term,

-2 (0 2r 2  2 UiUie R a cvT + - + __ 2r2
ie. 2 2 , where turbulent kinetic energy is defined as P

Strictly, this term should be accomodated in pressure and temperature terms in the inviscid

flux vectors in the momentum equation and in the viscous flux vectors in the energy

equation. These terms are usually neglected in the literature and in this thesis, though

Wilcox (1991) has pointed out that these terms become important above local Mach

numbers near 3.

2.1.2 Eddy Diffusivity Approximations

Euuations [2.3] contain unknown correlated fluctuation quantities which arise

from averaging the nonlinear convection operators in the momentum and energy equations.

Eddy viscosity models employ a Boussinesq (1877) approximation, where the Reynolds

stress tensor, "Puiuj , is assumed to be linearly proportional to the strain rate tensor:

Fl + ii I i j
-p "u [= I-+ 2.8 . . 8 k]

3xr. 3 x,3 Xkl j 3 [2.6]

where an eddy viscosity, tt, has been introduced. This is one of the approaches taken in

the present work.
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Analogous to assuming a linear relationship between apparent stress and velocity

gradient, a gradient diffusion hypothesis is adopted which assumes a linear relationship

between apparent heat flux, Puie, and internal energy gradient:

pue = 
tt energyai,

or introducing a turbulent Prandtl number, Prt = 9it/lit energy,

puie ,Prxi [2.7]

The effective stress tensor and effective heat flux vector provided in equation [2.4] can now

be written:

'gij ='lij"- PUi U. = lt [X +A 2~i k'i~

I (l'I + gt x + ~ x x 3 Zj

qi qi +rtlxi, [2.8]

where i has been replaced by cT. In the present work, air is used as the working fluid in

all test cases. Accordingly, the laminar Prandtl number, Pr1, is set to 0.72. The turbulent

Prandtl number, Prt, is set to a value of 0.91 (Cebici (1970) for example).

To close the system of governing equations, [2.3], it remains to obtain the spatial

distribution of eddy viscosity and turbulent kinetic energy.
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2.1.3 Turbulence Transport Model

In low Reynolds number k-e turbulence models, the eddy viscosity is obtained

from the Prandtl-Kolmogorov relation:

[2.9]

k jPujujj = ---- _ '
where the turbulent kinetic energy is defined as P , the homogeneous component

of the turbulence energy dissipation rate is defined as P ,C4 = 0.09 (obtained

empirically (Launder ans Spalding (1974))) and f. is a damping function to accommodate

the direct influence of solid boundary proximity on the local turbulence structure.

In general, low-Reynolds number forms of the k-E model can b" Favre averaged

and cast in conservation form for compressible flows as (see Coakley (1983), Narayan

(1991) for example):

4Ip. + k.xj + P -p+

- j) ' - j (p. + - (flCIP f2C2p-) + [aOtx [2.101

where production of turbulent kinetic energy is defined as:

""P= - u VtUiUXJ -4 k 2 - 1211
P= - i j a[/xj ax 3Xi aix-k]" ijaxJ [2.111
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and ark, Pre, fl, f2 , C1 , C2 , 1), and E are modelling parameters.

The particular form of low Reynolds number model used in the code was

originally devised by Chien (1982) for incompressible flow. For this model, the constants

and functions in equations [2.9] and [2.10] are given by:

Prk = 1.0, PrF = 1.3

= 1 - exp(-.0115y+), f1 = 1 , f2  2-exp(-R2/36)
9

C9 =0.09, Ci =1.35, C2 = 1.80

-2g.tk 2D = glkE = 2gl__ exp(_.5y+)

12 12

RTpu* u"
91i 91[2.121

In turbomachinery blade row computations, 4 corresponds to the streamwise

coordinate, l to the pitchwise coordinate, and C to the spanwise coordinate. The wall

proximity length scale, 1, used in equations [2.12], accounts for the influence of adjacent

walls (such as blade-endwall comers), and is defined as
1__ + . + 1._ +
IT ss In ps l; hub 1; shroud, where 1. and 1; are absolute distances from solid

boundaries in the two crossflow directions. Upstream and downstream of blade rows,/4

is replaced by absolute distance from leading or trailing edge, respectively. In tip clearance

gap regions, l; hub is replaced by 1 tip.
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In high Reynolds number k-e models, the dissipation variable, c, is the dissipation
_

rate in homogeneous turbulence, P The transport variable, E, used in

Chien's and certain other low Reynolds number k-e models is the isotropic component of

the dissipation. As discussed by Jones and Launder (1972), at high local Reynolds

numbers, the non-isotropic component of dissipation is negligible, so the model remains

valid in these regions. Near a solid wall, however, the dissipation is not negligible, though

the isotropic component of the dissipation goes to zero. The term, 1), accounts for the non-

zero value of total dissipation near the wall, so that the model also remains valid near solid

boundaries, but the convenience of specifying an E = 0 Dirichlet condition is retained.

Specifically, then, 1 represents viscous diffusion of turbulence kinetic energy at the wall,

which is in balance with dissipation there. Some numerical stability implications of this

choice of dissipation variable are presented in Chapter 3.

Since the k-s equations have been cast in compressible form, the direct influence of

the dilitation terms in equations [2.8] and [2.11] are incorporated. However, the other

modelling assumptions invoked in this thesis are essentially those for incompressible flow.

Specifically, terms in the unmodelled e equation which contain density fluctuation terms,

p', are neglected. The unmodelled, Favre averaged F equation is extremely complicated

due to the presence of many terms which contain density fluctuations. Jones (1980) points

out that the physical interpretation of exact terms in the incompressible s equation are not

helpful in modelling the equation. He argues that there is, then, little point in trying to

model the much more complicated exact equation, with varying density. Accordingly,

most efforts to date to model the E equation, in compressible flows, have retained standard

incompressible modelling.
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For the density-weighted time-averaged turbulent kinetic energy equation, several

researchers have chosen to explicitly model some of the extra terms which arise due to the

Favre averaging procedure. Specifically, VanDromme (1983) and Grasso and Speziale

(1989) have modelled some or all of the extra pressure work correlation terms, dilitation,

and density fluctuation terms which arise in the exact Favre averaged k equation, to account

for extra strain effects in mixing layer flows where buoyancy effects are important, and in

supersonic adverse pressure gradient flows. Though the framework for incorporation of

these types of corrections is available in a code using the Favre averaging procedure, no

such modelling is employed in this work.

Stability implications and validation of the low Reynolds number k-e model are

provided in Chapters 3 and 4 respectively.

Anticipation of the computation of a centrifugal compressor flow (Chapter 6)

required that no thin layer approximations be made in either the mean flow or turbulence

transport equations.

2.1.4 Algebraic Reynolds Stress Model (ARSM)

A class of ARS models, [Rodi (1976), Galmes and Lakshminarayana (1984),

Andersson and Nilsen (1989), for example] can be derived by application of equation [1.8]

to modelled FRS models such as that given in equation [1.7], yielding the following

general algebraic expressions for the six individual Reynolds stress components:

wUiUe -i - kTij

where



28

TV = Rij(C - C3 ) + (Pij - 2P?8j/3)(I-C 2) + Oij.w

P + E(C1-1) Rik =- 2W( eipjUkuj - EkpjpUiUJ)

- - atUj " , aUi ,)

Pij k - uk 2P = Pii [2.13]

and the parameters Cr, C1, C2, C3, Oij.w arise from the pressure strain correlation

modelling in the particular FRSM chosen. Rij, the production by rotation tensor, arises

when the Reynolds stress transport equations are derived in a rotating coordinate system of

angular velocity vector, Cp.

A number of researchers [Launder et al. (1975), Galmes and Lakshminarayana

(1984), Shih and Lumley (1986), Launder et al. (1987) for example] have proposed near

wall modelling for FRS or ARS closures, which account for the influence of the wall on

the pressure strain correlation, Oij,w (the so called "echo effect," which accounts for the

damping of the wall normal velocity fluctuation and redistribution of its energy in the other

two intensities), and/or very near wall viscous damping effects. In practical numerical

computations, wall functions are often used in both FRS [Shih and Lumley (1986),

Launder et al. (1987)] and ARS [Warfield and Lakshminarayana (1987), Zhang and

Lakshminarayana (1990)] models to bridge the near wall region, thereby avoiding the

necessity for viscous near wall modelling. Near wall pressure-strain modelling, though, is

retained in boundary layer code computations using FRSM by Shih and Lumley (1986) and

Launder et al. (1987), and an ARS version of Shih and Lumley's model due to Zhang and

Lakshminarayana (1990). For full-scale Navier-Stokes computations of the type

performed by Warfield and Lakshminarayana (1987) and of interest in this thesis, these

terms are not retained, for two reasons. Firstly, available models for Oij.w involve many

very complicated terms (Shih and Lumley (1986), Launder et al. (1987), for example). In

full Navier-Stokes implementation, the computation of this term alone would significantly
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burden the overall CPU performance of the method. The second reason for the neglect of

this near wall pressure strain term is its implicit incorporation in the hybrid modelling

approach presented below.

In this thesis, a hybrid low Reynolds number k-s model/high Reynolds number

ARSM approach has been devised. In the fully turbulent region (y+ = 0(102)), a

compressible extension to the high Reynolds number form of the ARSM due to Galmes

and Lakshminarayana (1984) is adopted:

-puiu .j  -ijpk - pkTij

where

Tij = Rij(2-C2)/2 + (Pij - 2P8i/3)(1-C 2)
P + pe(Cl-1) Rik =-- 2cOp( eipjpukUj - EkpjpUiU3 )

Pij= ( " iU -j - piU )
, 2P = Pii [2.14]

where C1 = 1.5, C2 = 0.6.

In the near wall region (viscous sublayer and overlap regions), the low-Reynolds

number form employed previously is used. This hybrid approach has the advantage that no

near wall modelling is explicitly required for the ARSM used, but the influence of extra

strain rates on Reynolds stress distributions are accommodated.

The matching point for the hybrid model is chosen as Y+match = 200. The

justification for this choice is as follows. As pointed out by Patel et al. (1985), the near

wall shear stress damping provided by the f,, functions in low Reynolds number k-e

formulations are designed to model the direct influence of molecular viscosity on the
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Reynolds shear stresses. However, since Reynolds stresses are also damped due to the

pressure-strain correlation ('Pij.w above), and the damping constants in the f;L function are

obtained by empirical matching of simple shear flow data (Chien (1982)), f implicitly

accounts for near wall pressure strain, though it is only appropriately correlated for the

viscous damping effects. in light of this and the choice in the present work to neglect near

wall pressure strain modelling in the ARSM used, Y+match was chosen as 200 since for

Chien's model, f. has nearly reached its freestream value of 1.0 at this location

(fg(y+ = 200) = .90).

The effective stress tensor then becomes for the ARSM:

IPaul l A ) .2. -jalk pkTij8ip
[i 1 i, 3 T Xk 3 [2.15]

Equation [2.15] is used to evaluate viscous fluxes in the momentum and energy

equations. The gradient diffusion approximation, equation [2.7], is retained for the heat

flux terms in the energy equation. Stability implications and validation of the hybrid model

are provided in Chapters 3 and 4, respectively.

2.1.5 Transformation of Governing Equations to Generalized Coordinates

In general, three-dimensional flow problems of engineering interest have physical

boundaries which can be very complex. It is convenient in these circumstances to map the

physical coordinates to a rectilinear computational space, (x, y, z) --> (4, TI, C), as shown

in Figure 2.1. In this thesis, such a transformation to generalized body fitted coordinates is

applied to the seven governing equations [2.3], [2.10]. The resulting coupled, Favre
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(X, y, z) ->C,1,

€T

Figure 2.1 Coordinate Transformation Representation
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averaged, three-dimensional, continuity, momentum, energy and k and e equations can be

written in conservative form in generalized body fitted coordinates as:

a+ (a~ +~ &c+ Dv+ ~

~ / [2.16]

where

Qil jw EC- pwU+,;zp Fc = pV+t 2 G = pwW+ z
+7) __ +7p

0

4xtxx+4yTyx + ztzx

4XTXY+4y*Tyy + 4ztzy

4xi~x+~y ,x-x)4~-y~-ry 'y -qy)+ 4utzx+ vtzy+;wtzz -qz)
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TlX'TXX+TlYTYX + 11ZTZX

i1xTxy+1YTYY + 71ZTZY
Tlxtxz+lryz + ThZTZZ

n Tx 'rywy -qy)+iijiUtzx+-vtzy4;Tzz -qz)

* .I+] Oni.V

0
CXTXX+Cy~TYX + Cztzx

cxtrxy+CVryy + Cztzy

Cx'txz+CYTYZ + ZTZZ

x(uThxx+v-xy+WTxz-qx)+~iiTyx-RvTyy+; Tyz -qy)+CzJwrzx+vczy+v-Tuz -qz)

0

pco(yw+2 )
s-1 pcJ(zo-2-v)

(cfP - Fe +

k .[2.17]
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Components of the effective stress tensor, ;ij, are defined in equations [2.8] and [2.151.

Metric terms in equations [2.17] are defined by

4X (y z-zy y zt - zy ykzn - z~yn

4 Y lY /y ) = J  X;ZTJ - Z;X7i X4Z; - Z4X; XnZ4 - ZqX4

lz Z = xny; - yzx; xVy4 - yzx4 xVyI - yx)

tx 4y 4z

J = det ix Tly TIz

where the metric Jacobian Ix Cy z [2.18]

In this thesis, equation [2.16], is solved numerically subject to appropriate boundary

conditions, as detailed in the next chapter. For notational simplicity, averaging superscripts

will be dropped hereafter.
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CHAPTER 3

DEVELOPMENT AND ANALYSIS OF NUMERICAL PROCEDURES

3.1 Discretized Governing Equations

The numerical solution of the system of equations [2.16] subject to appropriate

boundary conditions, is the topic of this chapter. The spatial and temporal discretization

procedures adopted are presented first. An extensive discussion of artificial dissipation,

including accuracy and stability implications on highly stretched grids, and the scalings

incorporated is provided in section 3.2. Boundary and initial conditions for the

turbomachinery flow computations of interest in this thesis are presented.

In the third section of this chapter, a comprehensive numerical stability analysis of

the discrete, coupled system of seven governing equations is presented. Order of

magnitude arguments are presented for flow and geometric properties typical of internal

flows, including turbomachinery applications, to ascertain the relative importance of grid

stretching, rotation and turbulence source terms and effective diffusivity on the stability of

the scheme. It is demonstrated through both analysis and corroborative numerical

experiments that 1) it is quite feasible to incorporate, efficiently, a two equation k-e

turbulence model in an explicit time marching scheme, provided certain numerical stability

constraints are enforced; 2) the role of source terms due to rotation on the stability of the

numerical scheme is negligible for rotation numbers typical of turbomachinery flow

calculations; 3) the direct role of source terms in the turbulence transport equations on the

stability of the explicit numerical scheme is negligible, except in the earliest stages of

iteration (a result which is contrary to that generally perceived); 4) there is no advantage to

numerically coupling the two equation model system to the mean flow equation system, in
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regard to convergence or accuracy; 5) for some flow configurations, including

turbomachinery blade rows, it is useful to incorporate the influence of artificial dissipation

in the prescription of a local timestep; and 6) explicit implementation of an algebraic

Reynolds stress model (ARSM) is intrinsically stable provided that the discrete two-

equation transport model which provides the necessary values of k and e is itself stable.

3.1.1 Spatial Discretization. Flux Evaluation

A finite difference discretization (for evaluation of inviscid and viscous fluxes),

which avoids the metric singularity at the interface between periodic and solid wall

boundaries (i.e. H-grid leading and trailing edges) that occurs in standard finite difference

approaches, has been adopted. This scheme, presented here, removes the ambiguity in

metric evaluation at such boundaries, and results in a more compact differencing molecule

at all grid points. In the present discussion, a two-dimensional formulation is presented for

the purpose of brevity and clarity.

Consider a two-dimensional flux evaluation in the computational plane shown in

Figure 3.1. When evaluating fluxes in the t direction, the derivatives a , a , may be

discretized to second order as

DE _ = il/,-i-/2
2 or t E+1I/2. - Ebi-1 /2  [3.1]

where at 1 The former gives rise to a 13 point differencing molecule in two-

dimensions (33 point in three-dimensions) for the viscous fluxes.
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Figure 3.1I Two-dimensional representation of periodic leading edge grid

topology in physical and computational space. Fluxes evaluated at X. Dashed

lines represent grid in periodic adjacent passage.
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Referring again to Figure 3.1, evaluation of Ec i+1/ 2.j and Ev i+i/ 2,j require values

of the transport variables, pressure and effective diffdisivities at i+1/2. These are obtained

unambiguously by averaging values at i and i+1. However, if the metric terms required at

i+1/2 are averaged in the same fashion, the metric ambiguity problem mentioned above

manifests itself. To see this consider the evaluation of E i+1/2,j at ile-1 as illustrated in

Figure 3.1. Straightforward averaging of metrics requires values of 4, 4, fix and fly at

ile, where

4x = JYrl, 4y = -Jxq , TIx = -JY , Iy = Jx4 , J = x4yl [3.2x Yrl xnY [3.2]

Here, x4 and y4 are not uniquely defined at i = ile, because either the suction or pressurea

side branch can be considered in evaluating 0. This difficulty is avoided, in the present

technique, in that all metrics used in flux computations are evaluated halfway between grid

points in the computational domain. Once again referring to Figure 3.1, at i+1/2, we have

the metric quantities as ciefined in equation [3.2], where discretization at i+1/2 is given as:

X4 i+1/2,j = Xi+lj - Xij , Y4 i+1/2,j = Yi+l,j - Yi~j

X1 i+1/2,j = .25*(xi+,j+l - xi+l,.j-l + xij+1 - Xij-1)

yn i+1/2,j = .25*(yi+l,j+l - yi+i.j-1 + yi.i+l - yij-1) [3.3]

Expressions similar to equation [3.3] are used to evaluate fluxes in the 7i and C directions at

j+1/2 and k+1/2 respectively. This discretization is second order accurate. Extension of

this procedure to three dimensions is straightforward.

The present approach requires more storage for metric terms than if the fluxes are

computed on the grid vertices themselves (13 point molecule), however, the accuracy,
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convenient application of boundary conditions and numerical stability of the scheme, all

suffer by using the larger differencing molecule when evaluating dissipation fluxes, so only

the second form in equation [3.11 was considered. Specifically, the truncation error

associated with discretizing the viscous fluxes on a uniform cartesian grid using a thirteen

point scheme is O(4A x2) + O(4Ay2) as compared to O(Ax 2) + O(zy 2) for the nine point

molecule, consistent with the truncation error of the convective fluxes. It is also easier and

more consistent to apply cyclic differencing along periodic boundaries and Neumann

conditions near the intersection of periodic and solid boundaries with the more compact

differencing molecule. In addition, it can be shown (Merkle (1988)) that using the larger

differencing molecule is equivalent to using the more compact form with added negative

dissipation, that is, a destabilizing term.

3.1.2 Explicit Numerical Procedure

The numerical technique used for temporal discretization in the present studies

incorporates a standard 4-stage Runge-Kutta scheme as first applied to Euler calculations

by Jameson et al. (1981),

-1 = n_
Q _Q + At R(Q)4

Q Q + -At R(Q )
-n3 2

Q Q + 2At R(Q )

Here, the residual, R, is defined according to

R =- a - chis [3.51
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Viscous and source terms are evaluated prior to the first stage, convective terms are

computed at every stage. The scheme is first order accurate in time. The stability region

for the scheme is shown in Figure 3.2.

The curve in Figure 3.2 represents the contour Ig(z)I = 1.0, where z is the value of

the complex Fourier symbol of any discretized scalar equation at a particular wave number,

and g is the amplification factor arising from a 1-D scalar VonNeumann linear stability

analysis of the given scheme applied to this discretized equation.

In Figure 3.3, an amplification factor vs. error phase plot is presented for this

scheme applied to a scalar advection equation with a CFL number of 2Y72. Also, for

comparison, the g vs. 0 plot for a Lax-Wendroff scheme (1960) is presented where a

typical CFL number of 0.85 was used. These CFL numbers are representative of those

used in three-dimensional Navier-Stokes computations using the Lax-Wendroff scheme

(Davis (1991)) and Runge-Kutta schemes. This diagram illustrates that the Runge-Kutta

scheme provides no high wave number damping, whereas the Lax-Wendroff scheme

intrinsically damps high wave number errors. This illustrates one of the characteristics of

Runge-Kutta procedures. Specifically, artificial dissipation must be purposefully added to

the scheme for stability, conceptually giving the user more control of its levels.

To accelerate the solution to steady state, locally varying timesteps are computed

based on a linear stability analysis of the discretized Navier-Stokes equations. This linear

stability analysis of the discrete coupled 7 x 7 system, is presented in section 3.3 of this

chapter, and provides the following local timestep specification :



41

iY

2 unstable CFLOP

stablei

0o_ __ _ x

-2

-4 -2 0 2 4

Figure 3.2 Stability boundary of Runge-Kutta scheme used in this thesis. The curve

represents the contour Ig(Z)I = 1.0, where Z is the complex Fourier symbol, Z = X +

iY of any discretized scalar equation at a particular wave number, and g is the

amplification factor arising from a 1-D scalar VonNeumann linear stability analysis of

the given scheme applied to this discretized equation.
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0.0 I I

0.0 0.5 1.0

Figure 3.3 Amplification factor, IgI, vs. error phase, ~,plot for RK4 scheme applied

to scalar advection equation. For comparison, the IgI vs. 4) curve for the Lax-Wendroff

scheme is also included.
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At =MIN [At ,At'] =

MIN [ CFL0 p
I+lNI +[W+aA4-V4Tv+V'n-V'n)+FV .V )

fop

+ 4yg.v ) (v .v 1) t _ _V4)__ _ + (vrv i(V .)] +

3p fv (v .v )(v .v 0 + 4v .v 1)v .v 0
- 16(at + 0, +uo) ] [3.61

Here, CFLop and flop are input parameters corresponding to operational CFL and

VonNeumann numbers chosen to ensure stability, and q4, an and a; are general artificial

dissipation scale factors, several possible forms of which are discussed in the next section.

The first term in the brackets in equation [3.6] arises from the convection operators, the

latter terms correspond to physical and artificial dissipation. The influence of machine

rotation, turbulence quantities and nonorthogonality metrics do not appear in this stability

specification, as justified by an order of magnitude analysis carried out in section 3.3 of

this chapter.

3.1.3 Boundary and Initial Conditions

Along blade surfaces, the no-slip condition is imposed upon the velocities,

pressure is extrapolated from adjacent grid points, and density is computed based on

specified wall temperature or heat transfer rate. Also, turbulent kinetic energy and

dissipation rate are set to zero along solid boundaries, as discussed in section 2.1.3.
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Considering the 4 direction only, the inviscid form of equation [2.16], can be written, in

0t /),where , is the 7x7fu
the absolute frame, in nonconservative form as 7x7flux

Jacobian of vector Ec, aQ. The eigenvalues of A are

U, U, U, U, U, U + aV * V, U - aN V • V .This requires that for subsonic inlet

flow six boundary conditions should be specified. Likewise, for subsonic exit flow one

boundary condition should be specified.

Accordingly, at subsonic inflow boundaries, total temperature profile and constant

values of turbulent kinetic energy and dissipation rate are specified. Following Kirtley et

al. (1990), for the subsonic rotor flow computation presented in Chapter 5, and for the

transonic centrifugal compressor computation presented in Chapter 6, inlet flow angles and

the axial component of mass flux are specified, and the static pressure is extrapolated along

'n = constant grid lines from the interior of the computational domain. This allows the user

to impose a desired operating flow coefficient almost exactly, without having to adjust exit

static pressure so as to pass the appropriate mass flow to match the flow coefficient. For

all other calculations, either flow angle or crossflow velocity components and total pressure

profile are specified, and the R- characterisic, R-a -2 1, is extrapolated along il =

constant grid lines from the interior of the computational domain. Specifically, designating

subscripts 1 and 2 for grid planes at and adjacent to the inlet boundary:

(y - I)(R-) 2 + -1/2(1--y)(R) 2 + 4(y + 1)cpTO 2
('Y+ 1) [3.7]

a result which is easily obtained using the definitions of total temperature and the left

running Riemann variable.
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At subsonic outflow boundaries, static pressure is specified and relative velocity

components, entropy, pk and pe are extrapolated along Ti = constant grid lines. For

annular geometries, a simplified radial equilibrium equation:

ap =yV2

r [3.8]

is used to integrate a specified hub exit static pressure in the radial direction to provide the

exit pressure distribution. Along periodic boundaries, values of the flowfield variables arc

prescribed along periodic "ghost" grid points and this information is used when discretizing

derivatives in the Ti direction.

The constant values of pk and pe, which are imposed at the inflow boundary, are

based on specified freestream turbulence intensity and length scale,

€., 13/2
Tu**= k- L* = , -- *

V. .[3.91

Typically, the freestream length scale is set between .001 and .01 times the blade

spacing, as this scale is of the same order as the largest eddy motions, i.e. the thickness of

the boundary layers which develop along the blades and endwalls.

The flowfield is initialized using an inviscid quasi- 1 D analysis to provide uniform

initial velocity profiles along each 4 = constant grid line. In situations where this simple

initialization strategy has proven to be insufficient, alternative procedures are detailed in the

following chapters.
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3.2 Artificial Dissipation

When central difference schemes, which do not inherently damp high wave

number errors, are applied to hyperbolic problems, the addition of artificial dissipation is

required to damp high wave number disturbances. These disturbances can be introduced

into linear problems through inconsistent boundary condition treatment or machine

roundoff error. In non-linear problems, such disturbances can be introduced through

aliasing of sub-grid scale non-linear disturbances, to lower, resolvable wave numbers.

Even for viscous flow calculations, artificial dissipation must be introduced into the

scheme because the physical viscous terms are only effective in damping frequencies at

higher wave numbers than can be resolved on practical grids.

In the present work, artificial dissipation is added to the five discretized mean flow

equations [3.5] as:

(a ) _ +z K)[3.10]

Here, D(Q) represents a mixed 2nd and 4th order nonconservative artificial

dissipation operator similar to that devised by Jameson et al. (1981):

D(Q) = D4(Q) + Dn(Q) + D;(Q)

D4(Q) = S2484Q + S464%24Q

D1n(Q) = S2T18,IQ + S4T6njnnQ
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D(Q) = $ Q + [3.111

The fourth order operators are included to damp high wave number errors and the

second order operators are included to improve shock capturing.

As pointed out by Pulliam (1986), artificial dissipation terms should operate on

physical values of the flowfield variables, that is, D(Q), as in equations [3.111, not D(Q).

This is required since in general, regions of smoothly varying flowfield properties can

occur in regions of non-smooth grid distribution. Accordingly, the scale factors, S, in

equations [3.11] should be scaled by the inverse of the metric Jacobian, J.

In addition to the above consistency requirement on the dissipation scaling,

artificial dissipation should always be reduced to levels adequate to stabilize a scheme

without altering the accuracy of the solution. For the computation of viscous flows on

highly stretched grids, this requirement is a sensitive matter.

3.2.1 Eigenvalue Scaling

If flux split differencing is used for the convection operators, an inherent amount

of artificial dissipation is introduced. It can be easily shown that flux split differencing

schemes are equivalent to central differencing schemes with appropriately added artificial

dissipation. Since Runge-Kutta schemes are intrinsically less dissipative than upwind

schemes, it is attractive to purposefully add artificial dissipation to these schemes in a way

as to provide the stability and shock capturing advantages of upwind schemes, while

retaining control of its levels. Accordingly, flux split approaches can be used to "guide"

the development of central difference artificial dissipation schemes [Pulliam (1986)],

leading to what is referred to in this thesis as eigenvalue scaling.



48

By way of example, Pulliam (1986) shows that second order Steger-Warming

(1981) flux vector splitting applied to the convection operator, ax, is equivalent to a

central difference plus a fourth order difference operating on Q. The coefficient of this

operator is the flux Jacobian matrix, A (where Ec = AQ). This suggests the use of the

spectral radius of matrix A as a scale factor in artificial dissipation operators applied to

central difference schemes.

In explicit local time stepping schemes applied to inviscid problems, local

timesteps are generally computed such that they are inversely proportional to the spectral

radius of A, p(A), or in multi-dimensions, some linear combination of the spectral radii of

the several flux Jacobians. For this reason, most early workers (see Jameson et al. (1981)

for example) scaled dissipation operators by p(A) + p(B) (for two-dimensional Euler

1 At- A=xAty
computations; Fc = BQ), or equivalently, by At where At, + Aty. Here, At x and Aty

are inversely proportional to p(A) and p(B) respectively. From a flux split point of view,

this says that the artificial dissipation is proportional to the propagation speed of the

characteristic which limits the maximum stable local timestep. This approach has been

widely used in multidimensional central difference inviscid flow computations where grids

are relatively uniform.

For high Reynolds number flows, very highly stretched grids must be used to

resolve body normal gradients in near wall regions. If the artificial dissipation terms in

both the and T" directions are scaled by the local timestep on grids which are highly

stretched in the Ti direction, excessive dissipation is introduced in the direction. This

effect is discussed by Caughey and Turkel (1988) and Swanson and Turkel (1987). This

excessive dissipation may reduce accuracy and convergence rates in viscous flow
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computations. Martinelli (1987) recently devised a flux Jacobian eigenvalue scaling of the

artificial dissipation terms which alleviates this problem. Since the present technique is

primarily used to compute viscous flows on highly stretched grids, anisotropic dissipation

scaling factors similar to those used by Martinelli are incorporated. In his two-dimensional

work, Martinelli provided the following form for the scale factors in equation [3.111

(where the present finite difference notation is used):

2_ l_ _ 2 Atc= 1 + , S21 = +

St'4 AtCT ~ j AC

!144\ 04T(II~~S 4 =1+_ 1 ,+ 4At S41 = j -1 +tls ~ ~ At= JC t1 J 1tn Atc]j [3.121

Here, Atg, Atn, are timesteps corresponding to unit CFL limit for the inviscid

one-dimensional problem in each direction,

= ,Atn1
jUI + a-V(V ) V1V + aV(V. V [3.131

and ag, O2.,, a44, 0 4q are scalar coefficients discussed below.

The choice of unit CFL scaling in the numerator of equation [3.13] ensures that the

steady state solution will be independent of the operational CFL number used to compute

local timesteps. If ca = 1, equation [3.12] reduces to standard isotropic scaling. As

mentioned above, this introduces excessive dissipation in the 4 direction in regions where

the grid is stretched in the rl direction. If cc = 0, the scaling becomes purely anisotropic. If

the grid is very highly stretched in the r direction, such scaling may not provide enough

dissipation in the direction, resulting in reduced convergence rates. For intermediate
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values of cc between 1/2 and 2/3, Martinelli (1987) and Swanson and Turkel (1987) have

shown good convergence rates for Euler and Navier-Stokes calculations on highly

clustered grids.

Careful examination of the scaling in equation [3.12], shows that if the coefficient,

a, is reduced to zero (towards purely anisotropic scaling), local levels of artificial

dissipation do decrease in the direction opposite that in which the grid is clustered,

consistent with the arguments presented above. However, the dissipation levels in the

direction of clustering actually increase. To see this, consider a two-dimensional grid

element, stretched in the 11 direction, of aspect ratio 100. If this element lies within the

boundary layer, where local velocity is small, the spectral radii of the flux Jacobians can be

approximated by:

p(A) = uI + aV-4• V4 _= a-/V_.V4, p(B) =[J4 + alVrl Vr1 = aV .V7 1

The scaling [3.12] provides for a = 1 (isotropic)

S aV4- _V4 + aWVn.Vi 100 K

S, a-fV- • V + aVnV .- = 100 K

where K is some constant, proportional to a constant length scale in the physical domain

and the local speed of sound. If a purely anisotropic scaling is introduced, a = 0:

S4 = 2a .V =--2K

Sn = 2aV .V = 200 K
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that is, S, doubles in magnitude, which substantiates the above argument. It has been the

experience of the author, that in three-dimensional viscous computations, it is crucial to

incorporate very low values of c, in order to obtain stable solutions ( a = 0.1 was used for

the rotor flow computation presented in Chapter 5, for example). Accordingly, Martinelli's

scaling, equation [3.12], has been modified and extended to three-dimensions in this work

as follows:

s - l~j__/ A ~tc Aeir a2 1__ + Atc 1 +Aten,2= to + + ,$ 1

S24 j -C I + L_ - S2-q= j+-i,$2 JAt At Atc /J - AAtt A Atc Jj

S2 ; - At - 1 +-Ac + At I
0; A t AtC4 AtCn a

$4 =J [t¢4 +At +Atc /j =JL+At c--- Atc /j

$4; J Atl Atc4 Atn l] [3.14]

where:

AtC4 = =, At1 , Atc;
IU+aVv jV '  Il+aAV1-V m WTa/.

[3.151

If this scaling is applied to the example provided above, for a = I

S _ a V V + a IVrIVl = 100 K
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S1  a'V V t + a-/Vr.* --V = 100 K

identical to the original scaling, but for (x = 0:

S4_a FV-.V=_ K

S, =-- a5/VT =_ - 100 K

That is, the modified anisotropic eigenvalue scaling, does not increase levels of

dissipation in the direction of grid stretching. This modified scaling, published originally

in Kunz and Lakshminarayana (1990) has been adopted by Chima (1991), who has also

found this scaling to provide a "good distribution of dissipative terms in each direction", in

three-dimensional viscous flow calculations.

If no shocks are anticipated in the flowfield, the scalar coefficients, a, in equations

[3.141 are defined as a4k = (Y4-q = (Y4C = - K4 , where typically 4 =_ 0.02. If shocks are

anticipated in the flowfield (see the supersonic cascade results in Chapter 4), a composite

dissipation operator devised by Jameson et al. (1981) is used to turn off locally the fourth

order central difference dissipation and turn on a second order central difference dissipation

operator. In this case, the scalar coefficients, ;, in equations [3.141 take the following

form:

0-,: - K2 M AX (v i+l, j, k,V, i, j. k,%',i-1, j, k)

Y4 '- MAX (6, K4 - 0)
" - 13.161
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where the dissipation "sensor" v, is a normalized second derivative of pressure that is very

small except in the immediate vicinity of shocks and stagnation points:

V~i, j, k = [Pi+i, j, k - 2 Pi, j, k + Pi-, j, k
Pi+l, j. k + 2 Pi, j, k + Pi-1, j. k [3.171

Here, K2 = 0.25, K¢4 =-0.02. Expressions similar to equations [3.16] and [3.17] are used

in the ri and directions. When shocks are not anticipated in the flowfield, x2 is set equal

to zero so that fourth difference artificial dissipation only is added to the mean flow.

The dissipation scaling issues presented so far are essentially inviscid in nature, in

that eigenvalues of the inviscid flux Jacobians only are considered. As the computational

grid in a Navier-Stokes solution is refined, smaller and smaller scales can be resolved.

Eventually, the small length scales associated with nonlinear disturbances introduced by

convection operators in the governing equations (shocks for instance) can be resolved, and

the gradients that these disturbances give rise to can be effectively damped by physical

dissipation. Accordingly, it is desirable that any variable artificial dissipation scaling

should have the property that as the grid is refined, artificial dissipation goes to zero. This

item is considered here; again a two-dimensional formulation is adopted for clarity.

If a cartesian physical grid is considered, with Ax = Ay, V-V =

VTl. V7l = 'I2 ( coincident with x-axis, 1l coincident with y-axis), then the scaling factors

proposed in equations [3.14] take on the following forms for isotropic (ax = 1, subscript i)

and anisoropic (ox = 0, subscript a) scalings:

o IUl + Iv1 + a, V V + a1/V - 1
o+ . a = -AV()(JL +a) +Axo(vI+a)Son J

s = Ayo(ju +a) + Ax(Ajq-a)
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Sa4 = Ayo(lu+a)

SOn = Axo0(j+a) [3.18]

where superscript 0 denotes the grid under consideration. If the grid is doubled n times in

the 1T direction, with n >> 1, as would be representative near a solid boundary in a viscous

flow computation, then denoting the refined grid by superscript 1, the scale factors become:

Sit = Ayu[+a) + Axolv]+a) = 1 Ayo(IuI+a) + Axovj+a) = Axdlvj+a)
2n

Si -TI- Ax0(l+a)
S1 = 2__Ayo(u+a)

Ax0(jt+a) [3.191

So clearly, as the grid is refined - i one direction only, both isotropic and

anisotropic scale factors remain finite as the grid is refined infinitely. However, 8rrQ --

>0 as

Ay --> 0, because, unlike the fourth derivative of a function Q, which may be large if Q is

exponential in nature, the fourth difference stencil applied to Q will always tend to zero as

the grid is refined for any continuous function Q. So the eigenvalue scaled artificial

dissipation operators do have the desirable property that artificial dissipation goes to zero as

the grid is refined, even if in only one direction, as is typical in high Reynolds number

viscous flow computations.

A problem arises in viscous flow computations though, because the rate at which

artificial dissipation goes to zero with grid refinement may not be adequate to keep levels of

artificial dissipation significantly less than the physical dissipation very near a solid

boundary. This is probably not surprising since all of the scalings presented are based on

inviscid considerations only. This observation warrants additional boundary layer scaling



55

such that artificial dissipation remain significantly less than physical dissipation through

most of the boundary layer.

3.2.2 Local Velocity Scaling

Another scaling issue is important in the computation of viscous flows. Near solid

boundaries, the viscous fluxes in the momentum equation are quite large and are

themselves adequate to provide smoothing. As discussed above, in these same regions,

second and fourth derivatives of the transport variables can be quite large leading to large

values of artificial dissipation there. This phenomenon, which has been observed by

several other researchers (Davis et al. (1986) and Swanson and Turkel (1987) for

instance), can give rise to very large nonphysical values of total dissipation in the near wall

region. It has been the experience of the present author, that in the momentum equations,

the ratio of artificial to physical dissipation, i.e. Rart/Rphys, where Rart = D(Q), Rphys

a,+ D__ + aGv~

at c + , can be as high as O(101), in the very near wall region if the grid is

highly stretchf'd locally! The accuracy implications of this are self-evident. Personal

experience, and that of others (Kirtley (1990), Weiss (1991)), have shown non-physical

overshoots of nearwall velocity profiles in converged viscous flow solutions on highly

stretched grids, when artificial dissipation operators which incorporate inviscid flow

physics in their formulation, are used.

In this thesis, a geometric decay function is used to control the levels of artificial

dissipation in near wall regions, in order to reduce the magnitude of numerical to physical

smoothing to acceptable levels. Specifically, the scaling functions in equations [3.141 are

multiplied by a normalized square of the local velocity, (W/Wrcf)2 , for the momentum

equations:
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D -() 14I WrefAY 11DQ [3.201

In Figure 3.4, this scaling function is plotted as a function of W/Wref. As shown

below, this additional local velocity scaling can greatly improve solution accuracy for the

high Reynolds number viscous flow computations of interest in this thesis.

To illustrate the above considerations in a quantitative fashion, a series of

numerical experiments were undertaken.

In Chapter 4, a turbulent flat plate flow is computed to validate the turbulence

models used. The details of these computations are provided there; suffice it here to say

that the Reynolds number based on distance from the leading edge for this flow reaches

0(106) and the grid is therefore very refined. If a typical value of r4 = 0.02 is used with

the modified eigenvalue scalings presented in equations [3.14] and [3.16], and the flat plate

flow is computed, a standard law-of-the-wall velocity profile similarity is not achieved.

This is illustrated in Figure 3.5a, where converged boundary layer velocity profiles are

plotted in inner variables, at a streamwise location where the local Reynolds number based

on boundary layer thickness is approximately 80000 [to match Klebanoffs (1954)

experiments; see Chapter 4]. Clearly, local velocity is seen to undershoot a standard log-

law profile.

The artificial dissipation scale factor, r.4, had to be reduced by a factor of 40 in

order to bring the converged solution to within acceptable agreement of law-of-the-wall

profiles. This is illustrated in Figure 3.5b, where r4 has been reduced to 0.0005.
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Figure 3.4 Artificial dissipation local velocity scaling function used in this thesis.
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Figure 3.5 Effect of artificial dissipation velocity scaling on law-of-the-wall predictions for a

turbulent flat plate flow computation. Standard law-of-the-wall relations (solid lines) and

computed values (symbols). Refer to section 4.1 for details of configuration and computation.
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If free stream velocity is used for Wref, and equation [3.20] is used to provide

additional scaling in near wall regions, the standard value of K4 = 0.02 can be used without

corrupting the solution accuracy. This is illustrated in Figure 3.5c.

It is noted that although a stable solution could be obtained for the flat plate flow,

using K4 = 0.0005, such a low value would bring about a rapidly unstable solution in

typical engineering calculations, where the flow physics are not diffusion dominated. To

illustrate the above scaling issue for such a typical high Reynolds number turbomachinery

computation, the low subsonic cascade flow, described in detail in Chapter 4, was subject

to a similar numerical experiment. Figure 3.6 shows the converged suction surface skin

friction coefficient predictions for the same case run with and without the velocity scaling

defined in equation [3.20]. This diagram again illustrates that significant errors can be

introduced due to near wall artificial dissipation levels in viscous computations on highly

stretched grids.

It is also worth noting that the dissipation scaling considerations addressed above

are especially important when a multigrid acceleration scheme is used. Careful tuning of

artificial dissipation levels is crucial when performing explicit multigrid calculations on

highly stretched grids. This is because inadequate or excessive dissipation can diminish the

high wave number damping properties of the driving scheme thereby rendering multigrid

acceleration less effective Swanson (1990).

Lack of adequate grid resolution in the t direction just upstream and downstream

of the blade edges, causes the wall damping function, f,,, in equation [2.12] to be effective

only over two to four grid points in this direction. This gives rise to very large streamwise

gradients in k and e at leading and trailing edges, which in turn leads to slowly growing

oscillations in these variables. It has therefore been found necessary, in turbomachinery
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Figure 3.6 Comparison of predicted skin friction coefficient, along the suction surface

of a subsonic double circular arc cascade, with and without velocity scaling of artificial

dissipation.
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blade row computations, to smooth these oscillations by incorporating small amounts of

second order artificial dissipation in the k and E equations, in the streamwise direction only,

in a manner consistent with equation [3.14], with S24 0.01, S2n = S2 = S =S4

S4; = 0.0.

Both the eigenvalue scaling (equation [3.14]) and local velocity scaling (equation

[3.20]) were used in all computations that follow. The precise values of the reference

relative velocity used in the scaling equation [3.20], are stated for each of the computations

presented.

3.3 Stability and Order of Magnitude Analyses of Discretized Equations

In order to provide some verification of the conclusions of the analyses provided in

this section, a number of parametric studies have been undertaken using the code applied to

a series of numerical test cases. The effects of rotation and turbulence source terms, grid

stretching and effective diffusivity and artificial dissipation are to be investigated, and

therefore these test cases should embody some or all of these features. Also, the test cases

should typify engineering calculations of complex internal flowfields such as occur in

turbomachines. Accordingly, a three-dimensional subsonic compressor rotor and a two-

dimensional cascade flow configuration are used. In Chapters 4 and 5, 180,225 and

11,739 point grids have been used to compute these flows, where the method is seen to

capture much of the complex viscous flow physics, within the accuracy of the turbulence

and tip clearance models used. The computational grids and configuration details for these

cases are included there. The author feels that these grid sizes are typical of those used for

viscous turbomachinery flow computations in industry. Additionally, for some of the

parametric studies performed herein, it was necessary to run the code many times. Every

fourth grid point was retained from the "production" 3D rotor grid for these cases. The
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resulting grid, is much too coarse to accurately resolve the near wall physics, but

convergence properties are similar to those of the fine grid solution.

A standard four stage Runge-Kutta scheme was chosen for its familiarity in the

numerical verification studies that follow, but the results obtained are valid for any Runge-

Kutta scheme.

3.3.1 Treatment of Mean Flow and Turbulence Transport Systems

Researchers who have implemented two-equation turbulence models in time-

marching Navier-Stokes procedures, have often adopted schemes where the turbulence

transport equations are numerically decoupled from the mean flow equations (Grasso and

Speziale (1989), Holmes and Connell (1989), Liu (1987), Sahu and Danberg (1986),

Gerolymos (1990), Mavriplis and Martinelli (1991)). In the present context, numerical

uncoupling implies that at each iteration the mean flow equations are integrated in time,

using frozen values of k and e from the previous iteration. The mean flowfield is then

frozen and the turbulence equations are integrated. This type of procedure is referred to as

"uncoupled" by Grasso and Speziale (1989), but elsewhere in the literature as "lagged"

(Sahu and Danberg (1986)) or "split" (Lee and Dulikravich (1991)). In explicit multistage

schemes, "coupling" simply means that fluxes are evaluated at each stage using values of

transport variables obtained at the previous stage of the scheme rather than using some

values from the previous iteration. This should not be confused with the standard coupling

of systems of equations in many implicit schemes.

Simple linear stabilty analysis indicates that the stability characteristics of the

"coupled" and decoupled approaches are identical. In earlier work by the present author

(Kunz and Lakshminarayana (1990)) a decoupled approach was chosen to simplify code
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development, and was used for the two-dimensional results presented in Chapter 4. Others

have cited code modularity (Gerolymos (1990)) and the ability to advance the equation sets

at different local timesteps (Holmes and Connell (1989)) as advantages to an decoupled

approach. More recently, a coupled approach has been adopted by the author; all three-

dimensional results presented in Chapters 5 and 6 used this approach. It has been the

experience of the author that this gives rise to a more compact and better organized code

and has no affect at all on the stability, accuracy or CPU performance of the scheme.

3.3.2 Vector VonNeumann Procedure

In generalized curvilinear coordinates, the compressible three-dimensional

continuity, momentum, energy, turbulent kinetic energy and turbulent kinetic energy

dissipation rate equations can be written in conservation form as:

-+ - - + - + a - , + a , +

0-,T D D [2.i61

where the transport variable, flux and source vectors are given in equations [2.17]. When

an effective diffusivity formulation is adopted, we have E = Ev( Le,Q,Q4,QnQ ),

Fv(Ate,Q,Q4,Qij,Q ), Gv = Gv(4teQQtQ7,Q;). To simplify the problem, viscous

flux vectors are linearized as Ev = E(Qn,Q1,Q;) F, = Fv(Q4,Qn,Q;)

G,, = Gv(Q4,QnmQ;). So in the stability analysis, the diffusivities are taken as locally

= 4 -Sijpk)
constant, and the influence of the components of the normal stress terms, axi are

Yp. VT
neglected, as is a heat transfer term prcportional to P . Such linearizations have

also been incorporated in stability analyses performed by other authors (MacCormack ard

Baldwin (1975), Abarbanel and Gottlieb (1981)). These assumptions are not invoked in
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the Navier-Stokes procedure but provide simplification in the following analysis.

Specifically, they allow us to write the nonconservative form of the governing equations,

with Q = (p,u,v,w,p,k,e)T , as:

+ + +DQ+

-.Q a2Q Q' 2 2  - a2Q
IS 2---Q '9 2Q -" 2----Q + '1 a 2Q + T12 a2Q + "T3 Q 1

+53 2  T -[3.21]

E- FCo PA3 cA=-- P X2 = kP, X3,
where Q Q

Ev Fv ,S @ jGvS 1 =PJ , S2 = PJaQ S3 -

DF, D(av a~ ) Gi
T1 E=P - v + - J,2 \O, -)D+ D-

These flux and source Jacobians are provided. Matrix P, which scales the viscous and

source terms consistent with the operations performed to convert to nonconservative form,

also appears in Appendix A. In the linearization of source Jacobian D ,we take S = S(Q).

Such a linearization has be -a used in an uncoupled implicit scheme by Sahu and Danberg

(1986) and in uncoupled explicit schemes which incorporate pointwise implicit treatment of

the turbulence equation source terms by Liu (1987) and Gerolymos (1990). Additionally,

the density is taken as locally constant in linearizing the near wall modelling terms 1) and E.

This is justified since these functions are very small except in the immediate vicinity of the

wall where local Mach numbers are low. It is noted that viscous deformation work terms
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do not appear in the nonconservative form of the energy equation due to the choict, of

pressure as the dependent variable.

Fourth order difference artificial dissipation operators are incorporated in the

stability analysis (inclusion of second order dissipative terms follows analogously and is

not included for brevity), so we add the following to the RHS of equation [3.21]

+ Q 1
+ CY_4 + III! 41 (~

(equation [3.21]) D4  a i [3.22]

where cr, cy, cr are any general locally varying dissipation scale factors. These factors

are real and negative (so that the fourth difference operators be dissipative) and have

dimension t 1.

If second order accurate central differences are used to discretize the spatial

derivatives, the corresponding Fourier symbols for the spatial derivatives in equations

[3.21] and [3.22] become:

- v Q, --o2(C - 1) Qkn--)-S4S', Q4n--4(C,- 1)2

Q,.--iS-n Q2r'-*2(C,1-1) Q.---S4S; Q4l--.4(C.-12

Q -iS Q2 -- 2(C-1) Q'n-+-SS Q4n'-S44C-1)2 [3.23]

where S = sin(O), C4 = cos(O), etc.... 0 is the phase of the error mode, and

A4 = Al A = 1. The Fourier symbols given above are consistent with the flux

differencing in the code. This is an important consideration as factors of 2 and 4 can

appear in the final stability expressions if viscous fluxes are discretized differently.
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If a standard multi stage Runge-Kutta scheme is incorporated, then a vector

VonNeuman stability analysis yields a polynomial expression for amplification matrix, G =

P(AtZ), where P represents some matrix polynomial function, and Z is the Fourier matrix

of the spatial discretization of the governing equations. A necessary condition for stability

is p(G) < 1, for all . Analyzing the eigenvalues of G for each error mode is not practical

computationally. Useful approximations are adopted here to simplify the problem. We

split Z = ZI + ZR, such that X(ZI) are all pure imaginary, and X.(ZR) are all pure real, and

analyze the individual problems G, = P1(AtZI), GR = PR(AtZR) (where now PI and PR need

not necessarily be the same polynomial function). Considering the Fourier matrix Z (given

in Appendix A), we estimate:

p(GI) = p(Pj(AtZI)) = Pj(p(AtZ)) [3.24a]

The second equality in equation [3.24a] is strictly true only if AtZ is hermetian, in which

case [3.24a] would be a straightforward application of the spectral mapping theorem (Varga

(1962), for example). In the present context of local linearized analysis, equation [3.24a]

is submitted as an approximation which provides useful information as will be seen.

Matrix ZR is pure real and there exists S such that ZR = S'1 ZRS is real and

symmetric (Abarbanel and Gottlieb (1981)). That is, the spectral mapping theorem applies

directly:

p(GR) = p(S'IGRS) = p(PR(AtZR)) = PR(p(AtZR)) = PR(p(AtZR)) [3.24b]

So we have P(GR) = PR(P(AtZR)), and estimate p(GI) - PI(p(AtZI)). It remains

then only to ensure that the locus of p(AtZ) and p(AtZR) remain simultaneously within the

scalar stability bound for the chosen scheme. Accordingly, if we evaluate all elements of Z,
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and ZR at the phase for which they are a maximum, conservative criteria to ensure stability

become:

Atp(Zi) < i CFLOp and Atp(ZR) <2op [3.251

where CFLop and!Qp are operational Courant and VonNeumann numbers chosen such

that the rectangle formed by, O < Q < 92op, 0 < CFL < CFL.p lies within the scalar

stability boundary of the chosen scheme (see Figure 3.2).

So it is assumed in equation [3.25] that all of the eigenvalues of

ZI = is4Al+iS-nA2+iS;A3+i(-iD) [3.26]

are imaginary, and that all of the eigenvalues of

ZR 2(C-1)SI+ 2 (C-1 )S2+2(C ; - 1)S3
-S tSn 1 

-S tS ' 2- S-lSJ3

+4(Ct- 1)2aI I+4(C- 1 )2craI+4(C;- 1 )2(I+DR [3.27]

are real. This assumption will be verified below. Here, for convenience, D has been split

- DI + DR, such that X(ZR) are all pure real and X(ZI) are all pure imaginary. DI and D1R

are given in Appendix A.

Commencing with the hyperbolic analysis, an expression for ZI (also given in

Appendix A) can be obtained from equation [3.26]. The seven eigenvalues of Z, are:
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X(Z)= iu,

+1 22+22 2 2 2 2
{U +I4 2+4cak1 +c2(k +k+k)4y 1 o4k +2k+kk)

U± 2ViCIfIly + C2f21
[± kP[3.28]

where U = US4+VS +WS; and k, =  SxSk+7 +xS , k, = kyS4+1TySjj+CySC,

S-z+ These eigenvalues are indeed pure imaginary (as per our choice of

DI), since the groups of terms inside the square root signs are never negative (independent

of the sign of co). The coefficients of the first derivative Jacobians are maximum at =

ic/2. A conservative estimate for the maximum value of p(Z I) is therefore obtained by

evaluating the trigonometric terms at this phase, so the spectral radius of ZI ,

p(Z) _ i MAX

[ 2 j/w+ck~2k+~k)j~2 4cokl .Ic2k+k2+k)]

k PC[3.29]

where now U =U1+M+'M, kI -kx.lj+i Ixl, k2  k3 JImJ+ht .

Moving to the parabolic stability analysis, we have:

p(ZR) = P( 2(Ck-l)SI + 2(C 1-l)S 2 + 2(C;-1)S 3

- sks1I1T - sksJ 2-s11sJi 3
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+ 4(C4-1) 2aYI + 4(C -1) 2a I + 4(C -1)2aI + DR ) [3.30]

The non-symmetric element of Si does not affect the eigenvalues of Si, nor of ZR,

therefore this term can be dropped in the following analysis, so Si is treated as symmetric

and real hereafter. We can invoke the matrix inequality:

p(ZR) 1 1 2(C4-1)S 1 + 2(Cm-1)S 2 + 2(C;-1)S 3

- S4STI - S4ST 2-S-SJ 3

+ 4(C4-1) 2o I + 4(Cn-l) 2o I + 4(C;-1) 2CyI + D1R I [3.31]

where I Irepresents any consistent matrix norm (Stewart (1973), for example). The

triangle inequality provides:

p(ZR) < I12(C4-1)SIII + II2(Cn-I)S211 +112(C;-1)S311

+ II-S4SrnTII + II-S4Sj 2II + II-SnST 3II

+ 114(C4-1) 2a0IIi + 114(C n- l)2anII + 114(C;-l) 2ac4II + I1D1I [3.32]

The coefficients of the second and fourth derivative Jacobians are maximum at

x - it, and those of the cross derivative terms are maximum at = v2. A conservative

estimate for the maximum value of p(ZR) is therefore obtained by evaluating all the

trigonometric terms at the phase for which they are the largest :
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p(ZR) : 411SI11 + 4115211 + 411S311 + lIT 111 + 11+1T 311

+ 1611akIII + 1611anIII + 1611aIII + IIDRII [3.33]

Choosing a matrix 2 norm •

p(ZR) -4 [p(SI ) + P(S2) + P(S3)] + [PM'I+ p(T 2)+ p(" 3)]

+ 16p(aFI)+ p(oI)+p(ao1)] + p(DR) [3.34]

where we have used the matrix identity I JW 12 = [p(WTW)] 1/2, and the fact that

Si, Ti, oiI and D 1 are symmetric and real.

The eigenvalues of Ti are complicated, but if it is assumed that the grid is close to

orthogonal in regions where the viscous stability bound becomes important (see Martinelli

(1987)), the eigenvalues of T1 are found to be:

X(T) --- X2(T) - 3 = X((TTI) = 0,

6 = -.Tr) I -

3p [3.351

The spectral radius is therefore,

[p(T'+ P C%2)+ T3)]

+/(V .Vt)(V V ) +./(VI. VTI)(V -V ) ][3.36]
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A simple form for the eigenvalues of S i can be obtained without invocation of a

local grid orthogonality assumption, but for consistency with the development for Ti, such

terms are also dropped in Si, so:

XIi(Si) = 0, 712(S) = Z4 . V)3 p

7,6(S 1) = X4 1 )1 -L (V4' V4), X7(s 1) = 9 +-L t

.6($i) = (L + prk) .V) 7($i) - ,+ L)(VP .V) [3.371

For y = 1.4, PrI = 0.72, Pr, = 0.9, Prk = 1.0, Pr,=1.3, the spectral radius is therefore,

4 [p(-S+ v +vp + P PWivPr)
4[p(S)+ p(S 2) +P(S )]=: P-+ - + . [3.38]

On inspection:

lp(oYI)+ p(oaI)+p(oGI)] = -16(o%+ a,, + a) (recall that the artificial dissipation scale

factors are negative and real). Lastly,

L(BR)--0, O, O, O, O, 2p _._gI - 2C2f2e. 2 gPi _y.12

DR pk p 2 ' k p12 [3.39]

So

p(DR) =MAX Z2" 2g 2, f 2 Y)IP 1P 2 [3.40]
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The spectral radius of ZR:

4'/!1 t p..C .

p(ZR)- + + -+V 

+ Pe
3p

+iviixx~ ~ 2C2f2e + 2 g ItI
-16(c% + a n + o) pk p121 k p12  [3.41]

In practice, a stable local timestep could be obtained from:

At = NUN [ At,At, ] MIN [ CFLo no ]
p(ZI) ' p(ZR) [3.42]

where p(Z) and p(ZR) are given in equations [3.29] and [3.41]. It is noted that in the

absence of rotation source terms, turbulence model source terms, and artificial dissipation

terms, expressions [3.29] and [3.41] represent a three-dimensional extension to a form

presented by Martinelli (1987).

3.3.3 Order of Manitude Analyses

In order to ascertain the relative importance of the various terms which appear in

equations [3.29] and [3.41], an order of magnitude analysis is undertaken here. It is first

observed, upon inspection of equations [3.29] and [3.41], that the direct influence of

rotation and turbulence source terms can only reduce the maximum allowable hyperbolic

and parabolic timesteps, for plausible values of (o, k , e (-o < co < oo, k > 0, E > 0). For
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the following arguments, we choose constant reference length scale, 1. = blade height and

velocity scale, V. = blade tip speed.

3.3.3.1 Rotation Source Terms

Upon nondimensionalization, the terms in the square root sign on the second line

of equation [3.29] are of order

4Ro2 ± - ,N 1 + (N + N2 +
M M[3.43]

R o '- M = C - Ni = L

where V- V-' A are rotation, Mach and grid clustering parameters. By

prescription of the reference scales, V.* and L, 0(10-1) < Ro < 0(100). For the

compressible flows considered herein, 0(10-1) < M < 0(100). Notice that here, M does

not represent a typical local Mach number, rather it is formed from a reference velocity and

local speed of sound. For realistic grids, 0(101) < Ni < 0(105). The rotation terms will be

most significant when R, is large, M is large and Ni is small, that is in the core flow

region. So the third term in equation [3.43] is no less than one order of magnitude greater

than the other two terms, which suggests that the rotation terms can be neglected in the

specification of a local timestep.

To substantiate this conclusion, three fully turbulent coarse grid test rotor flow

cases were run. The nondimensional stability parameters as defined above are Ro = 0.5, M

= 0.2, Ni rain - 10, for this case. In light of the above arguments, there should be very

little influence of the rotation terms in equation [3.29] on the stability of the scheme. In

Figure 3.7, convergence rates are compared for the cases where o was set to the machine

rotation rate of 113.2 s-1 in equation [3.29], and where Co was set to zero in this equation.
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Figure 3.7 Comparison of convergence rates for rotating (solid) and stationary

(dashed) rotor passage flow with and without inclusion of rotation term in local

timestep, evaluations.
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The plots are indistinguishable, indicating that local timesteps are indeed negligibly

influenced by system rotation for this case. Accordingly, the first term in equation [3.29]

may be replaced by the expression:

U+ [344]

The term U should be retained in equation [3.44] as it can be easily shown that this

term may be of the same order of magnitude as the other term in equation [3.44] if

Mlocal = q/c = 1 Also appearing in Figure 3.7 is the convergence history for the same case

run with the machine rotation rate set to zero in the flow solution. The convergence rates

compare closely to approximately a five decade drop in the mean density residual, after

which the rotating case converges more quickly. This result is included to stress that the

physics of the flowfield can, of course, influence the stability of the scheme, and that the

above conclusions apply only to the determination of a stable local timestep. It is noted,

that these conclusions should break down for very high tip speeds and very coarse grids, in

which case, for stability, the rotation terms should be retained in equation [3.29], and the

rotation source terms should be evaluated at every stage.

3.3.3.2 Turbulence Model Source Terms

The term P/pe, the ratio of turbulent kinetic energy production to dissipation,

appears in equations [3.29] and [3.41]. Assuming that the flow solver converges to a

physically reasonable solution, it can be argued that at convergence this term is of order 1

or less. Specifically, the local equilibrium assumption, P/pe S 1, is valid for the nearly

homogeneous core flow turbulence, and for thin shear layers, whereas, near the boundary

layer edge and in separated shear layers and wakes, P/pc < 1 (see Hinze (1975), for

example). Additionally, in the immediate vicinity of the wall P/pe a goes to zero, where
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subscript "a" denotes the true dissipation rate. In Chien's model, the dissipation variable,

e, is the isotropic component of the dissipation rate. Though the isotropic component of

the dissipation rate goes to zero at the wall, unlike the true dissipation which assumes a

finite value there, P/pe still goes to zero. To see this, designate subscripts a and i to

correspond to actual axd isotropic components of the dissipation rate. Then:

_P P
P~i Pea + 1 [3.45]

-2pg,k

where 12 . Both numerator and denominator in equation [3.45] go to zero as the

wall is approached. The denominator going to zero is simply a statement that dissipation

and molecular diffusion of turbulence energy are in balance at the wall. Through the entire

near wall region (say y+ < 0(102)), convection of turbulence energy is negligible by

comparison to dissipation, diffusion and production (Hinze (1975)). Therefore, in order

that the turbulence energy budget be in balance in the immediate vicinity of the wall,P

PCa + ), must uniformly approach zero as I --> 0. So with C1f1 = 1.35, 1.4 5 C2f2 - 1.8

(for Chien's model), it can be assumed that at convergence, the terms

-L + IClfl-E- + C2f2) =0(1)
AAPC I PC[3.46]

in equation [3.29]. Turning to the factor E/k, the magnitude of the hyperbolic terms in

equation [3.29] are now compared. In the core flow and outer regions of the boundary

layer

M. JV4.V4 +2 V V] V (1 Ni)> 101

[3.471
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where the same constant reference length and velocity scales are chosen as before. If local

turbulence intensity and turbulence length scales are defined:

Tkl2 L=C " k 3/ 2

T- --1 , L--. I
V . [3.48]

then , where C is the ratio of integral turbulence length scale to blade

height, L = C2, Reasonable bounds are 0(10 -3) < T < 0(10-2), 0(10 -3) < C < 0(10-2).

. < 100
So \* , that is, comparing equation [3.47], away from the immediate vicinity of

solid boundaries, the turbulence source terms should be no more than one order of

magnitude less than the convective acceleration terms in equation [3.29], at convergence.

In the immediate vicinity of the blade and endwalls, an appropriate near wall length

scale, v/u*, and velocity scale, u*, are chosen. The ratio of convection to turbulence

source terms is of order

c/Ay = (c/u*) ([v/u]/Ay)
&/k (E+/k +)  [3.49]

where y is chosen as the blade normal coordinate here for familiarity, u* = w is the
e+ M - VW k

friction velocity, and u 4 , u 2 . Again, in Chien's model, e is the isotropic

component of dissipation rate. For turbulence models which solve for the actual

dissipation rate (Lam-Bremhorst (1981), Myong and Kasagi (1990) for instance),

e+/k + --> -o as y --> 0, since e is finite at a solid boundary. This may be why these models show

unfavorable stability properties in time-marching Navier-Stokes computations, as noted by

the present author and others (Choi and Knight (1989), Kirtley (1989)). In the opinion of

the author, this near wall behavior is more likely the cause of numerical problems than the
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Neumann or second derivative boundary conditions on the e equation, to which these

difficulties are often attributed, in models which solve for &a (Speziale et al. (1990), for

example).

For Chien's model, we estimate from published near wall distributions of k+ and

e+ for simple shear layers (Patel et al. (1985)) the following:

0(10-2) < £+/k+ < 0(10-1) [3.50]

Also

0(10-1) < ([v/u*iAy) =(y/Ay]/y+) < 0(100) [3.51]

depending on near wall grid resolution (at the wall ([y/Ay]/y + ) = 1/y+ 0_ 0(100) ), and

(c/u*) = (c/,) ( 2  
)C/-- ) > 0(10')

f , [3.521

So near the wall, we also expect the turbulence source terms to be no more than

one order of magnitude less than the convective acceleration terms in equation [3.29!, at

convergence.

Turning to the other turbulence source terms, we can invoke exactly the same
arguments as above to neglect the terms Pe k and which appear in equation

[3.41], since they will be negligible by comparison to the convective acceleration terms in

equation [3.29] everywhere in the flowfield. However, the near-wall modelling terms,
2 gt 2 . .Y *

2 and 12 can be very large near solid boundaries and should be considered. Again
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choosing y as the blade normal coordinate, near solid surfaces the ratio of physical

dissipation to wall correction terms in equation [3.41] is of order Ay2  y2 . This

expression will be very large except in the immediate vicinity of the wall (gt --> 0, y -->

Ay), where it approaches unity. Therefore, very near a solid wall, where turbulent

diffusivity damping effects dominate, the wall modelling functions give rise to parabolic

stability restrictions approximately equal in magnitude to physical diffusion terms (This is

not a surprising result since I) represents molecular diffusion of k at the wall). However, it

is shown in the next section that convection dominates the overall stability of the scheme in

such regions, so it is expected that the wall modelling terms in equation [3.41] may be

neglected as well.

In summary, the foregoing arguments suggest all turbulence source terms have

negligible influence on the numerical stability of the scheme, at convergence. To

investigate this, the relative magnitudes of the terms above were examined for the fine grid

rotor and cascade calculations in both early and late stages of iteration. Designating

g--/fP lcfp +C2f2) 2PF

A) k' pE B) pC k
2g,

C) 2C2f2f D) - 2

E) U + c/V4-V4+Vl.VTI+V .VC+2tV4.Vn+V -VC+V1.VC]

F) P Ir+ +  V .V' +v

+ 3p [W(v.v)(VT, vn)+4(v4.v j(vC.v +.3p
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For the fine grid rotor flow computation, at convergence, the magnitudes of terms

A, B and C were less than 0.1 times the magnitude of term E, and the magnitude of term D

was less than 0.1 times the magnitude of term F, at every point in the computational

domain, thereby substantiating the arguments of the previous section for this case. Upon

cold start "inviscid" initialization the same conditions were observed except for term B.

Specifically, at iteration 1, the magnitude of term B was greater than one tenth the value of

term E at approximately .15 of the grid points in the flowfield. This number decreased to

.002 in 250 iterations. For the cascade computation, the ratio of these terms were all less

than 0.1, both at iteration 1 and at convergence.

Some discussion is warranted here. The foregoing arguments suggest that the

stiffness associated with large values of near wall turbulence transport source terms is

negligible for Chien's model, except in early stages of iteration. The stiffness (local

timestep restriction) associated with computing flows on very highly stretched grids using

time marching algorithms supersedes difficulties brought about by these source terms. For

this reason, the present author has been able to compute successfully a variety of high

Reynolds number flowfields using this model (see following chapters), without taking

account of the k-e source terms in the determination of a local tirnestep and while evaluating

source terms prior to the first stage only. Additionally, the convergence rates have been

found to be nearly identical to calculations performed using an algebraic eddy viscosity

model. This is illustrated in Figure 3.8, which has been adapted from Kunz and

Lakshminarayana (1990). In this figure, a flat plate plate boundary layer computation was

performed on a highly stretched grid (refer to validation studies, Chapter 4) using both the

low Reynolds number k-e model and an algebraic eddy viscosity model due to Baldwin and

Lomax (1978). As seen in the figure, the convergence rates are very similar.
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Figure 3.8 Convergence histories for turbulent flat plate flow computations.

Baldwin and Lomax (1978) model (solid line) and present k-E model (dashed

line).
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Since the source terms do not significantly influence the stability of the scheme, the

use of locally implicit treatment of the source terms should not be necessary. This

reconciles with recent results obtained by Martelli and Michelassi (1990) who used a

factored implicit time marching scheme. They found that pointwise implicit treatment for

the source terms in the near-wall q-co model they used provided no difference in

convergence rate over a purely explicit treatment.

To investigate this further, the fine grid cascade computation was run three times.

First the standard approach was used, where all source and dissipative terms are evaluated

prior to the first stage. Next, the code was run evaluating all source and dissipative terms

at every stage. Lastly, the code was run using pointwise implicit treatment of the

turbulence source terms. Specifically, for the k and e equations, each stage in the standard

RK4 procedure (equation [3.4]) is replaced by :

Qk+l = + Oak+lAt [I - Oxk+lAt6k] 1 R(Qk), k = 0, N-1 [3.53]

where D is given in Appendix A (note: ( = 0 for this case). For each of the three

computations, CFLp was chosen as 2.8, and Qp was adjusted to the maximum value for

which a stable solution could be obtained. Specifically, CIopI = 0.95, Qop2 = 0.80,

0,onz = 0.30. The convergence histories for these calculations appear in Figure 3.9a. In

Figure 3.9b, the predicted boundary layer velocity and turbulent kinetic energy profiles at

s/c = 0.2 on the suction surface are compared. The convergence histories are quite similar

for all three approaches, and the converged solutions are indistinguishable. These findings

further substantiate the claims made above.

Recently, Gerolymos (1990) obtained two dimensional supersonic duct flow

results on very fine grids using an explicit multigrid scheme and a low Reynolds number
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model due to Launder and Sharma (1974). This model is similar to Chien's in that the

isotropic component of dissipation is a transport variable. Gerolymos notes that "for both

the driver scheme and the multiple-grid procedure, [pointwise implicit treatment] of the

source terms is essential to the stability of the method." Since the source term linearization

he chose is similar to that analyzed and used above, his statement for tne driver scheme is

in contradiction to the present findings. However, when a multigrid procedure is

incorporated, the thesis conclusions reached above become less valid if the complete

residuals, including source terms, are evaluated on successively coarser grids.

Specifically, grid metric stability constraints associated with convection and diffusion

operators are relaxed when going to coarser grids, whereas timestep constraints associated

with the source terms are not. This is pointed out by Mavriplis and Martinelli (1991), who,

like Gerolymos, chose a multigrid procedure where the turbulence source term residuals are

retained on coarse grids. They justify using implicit source treatment so that these source

terms will not limit the larger timesteps allowed by relaxing the convection and diffusion

stability constraints on coarser grids. This exact same argument may be extended to

consideration of the rotation source terms as well.

In practice the author has encountered several cases, including flat plate and

supersonic cascade flow computations where large relative values of production, P/pe,

cause the turbulence model to become rapidly unstable in early stages of iteration, when

standard inviscid initialization is used. These cases have in common that freestream

turbulence levels are low and Reynolds numbers are very high. It has been found that

incorporation of the turbulence source terms in equations [3.29] and [3.41] is ineffective in

stabilizing these cases. However, several procedures are effective. Specifically, k and E

are required to remain positive :

pe. > KF p... [3.54a]
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pk > Kk p*k* [3.54b]

where K£ = 0.01 - 0.0001 and Kk = 0.0001. These two procedures were recommended to

the author by Connell (1989), and are used by Gerolymos (1990). Also the inflow

turbulence intensity can be increased to an unrealistically high value for the first 20-50

iterations:

T.* = 5 T. actual [3.54c]

This has the effect of significantly reducing P/pe in early stages of iteration, since upon

initialization P

So in lieu of the above analyses and verification studies, rotation and turbulence

source terms are not included in the specification of a local timestep, in any of the

computations to follow.

3.3.3.3 Physical and Artificial Dissipation

Turning next to the physical diffusion terms in equation [3.41], both of order

pvJ. pv.
Rel(, where p.t. t [3.551

In many internal and external flows including turbomachinery flows, we have

Rel O(10 5 - 106) and (101) < Ret < O(105), except in regions where wall damping is

effective (where Rt --> -c). So comparing the inviscid terms in equation [3.29], which are
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1Ni
of order M ,we invoke the bounds on M and Ni provided in the previous sections, and

conclude that the parabolic timestep may be smaller than the hyperbolic term, Atv < Ate, in

regions of very high grid clustering (Ni = 0(105)) and low R. (= O(01)),
-L N2 > L Ni

ie. Ret M . In Figure 3.10, the Atv /At, = 1 contour is plotted for the fully

converged production and coarse grid rotor computations at an annular grid slice near

midspan. In both cases, the parabolic stability considerations described above are seen to

manifest themselves near the leading and trailing edges. This provides numerical

verification of the necessity to include the effective diffusivity terms in equation [3.42] in

calculations where large diffusivities occur in regions of large grid stretching. It has been

the experience of the author that this is especially important during the course of iteration as

illustrated in Figure 3.11. There it is shown that the parabolic stability bound dominates

for more than half of the grid points in early stages of iteration for the coarse grid test flow

configuration, and for approximately 7% of the grid points at convergence. The cascade

computation yielded similar results. Specifically, at convergence At, < Ate for

approximately 4 % of the grid points, all in the immediate vicinity of the blade leading and

trailing edges. It is noted that algebraic eddy viscosity models do not typically give rise to

the parabolic stability mechanism presented here, when applied to turbomachinery blade

row computations. This is because eddy viscosity is assumed to be zero upstream of the

blade row (as for say Baldwin and Lomax (1978) point transition model), so that,

depending on wake treatment, there should be no regions of the flowfield where iarge eddy

viscosity is coincident with high levels of grid clustering.

Artificial dissipation is added to the discrete equations by design to influence the

stability of the scheme. If physical dissipation gives rise to a locally dominant parabolic

stability constraint, ny artificial dissipation will destabilize the calculation. Therefore, the

artificial dissipation terms in equation [3.41] must be retained if maximum operational
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Figure 3.11 Percentage of grid points for which At, < Atc as a function of

iteration number for coarse grid rotor flow computation.
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VonNeumann numbers are to be used independent of levels of added dissipation. This is

illustrated in Figure 3.12. The solid line in this figure is the convergence history for the

coarse grid test rotor flow computation run with gop = 1.75, CFLop = 2.80. Standard

values of fourth difference dissipation (refer to section 3.2), were used for this calculation,

the local timesteps being computed from equations [3.29] and [3.411. Due to the parabolic

stability constraints arising from physical dissipation, Qp had to be lowered substantially

when artificial dissipation was not incorporated in equation [3.41]. The three dashed

curves in Figure 3.12 illustrate this. A choice of '20P = .6 yielded a divergent solution; UoP

= .5 showed some unstable behavior in early stages of iteration (compare Figure 3.11), but

recovered and converged. !Qop = .4 provided a stable iterative process with a slightly

diminished convergence rate. This demonstrates that it is useful to incorporate artificial

dissipation in the parabolic timestep prescription in problems of this type, to avoid ad hoc

specification of an optimum VonNeumann number which varies with amount of artificial

dissipation used.

3.3.4 Stability Boundary

The investigations reported in the previous section, suggest that the rotation and

turbulence source terms can be neglected in equations [3.29] and [3.41], but all other terms

including artificial dissipation should be included, and the procedures summarized in

equations [3.54a-c] should be adopted. This gives rise to a robust and convergent code for

computation of internal flows, including turbomachinery flows, using the low Reynolds

number k-s model in an explicit solution procedure. In Figure 3.13, the location of CFLop

and fop corresponding to maximum attainable convergence rates, for the fine grid cascade

and rotor flow computations, are plotted with the stability boundary for the scheme. The

locations of these operating points are very close to the scalar bound for the scheme

(compare Figure 3.2). The corresponding convergence histories for these two
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Figure 3.12 Comparison of convergence rates for several operating von

Neumann numbers with (solid) and without (dashed) inclusion of artificial

dissipation terms in timestep computations.
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Corresponding convergence histories for these two calculations are also included.
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"production" runs also appear there. This figure provides additional support to the validity

of the foregoing analyses in application to full scale engineering computations.

3.4 Numerical Implementation and Stability of Algebraic Reynolds Stress Model

In Chapter 2, a hybrid algebraic Reynolds stress model was introduced. Equations

[2.14] are implemented directly in the flow solver as follows. The nonlinear coupled

algebraic system defined by equation [2.14] can be implemented by lagging the turbulence

energy production term, P, by one iteration or by using the production of turbulence kinetic

energy obtained from the 2-equation model. The latter ipproach is adopted here. If the

machine axis is chosen to be coincident with the x-axis (no loss of generality), the cartesian

components of the rotation production tensor (equation [2.14]) are simplified. The

resulting 6 x 6 algebraic linear system of equations become A R = B where:
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A [3.56]

1+L[k2 4U) Llk2(-2.vy)] Lfk2(-jWz)] Lk2(u-jvx)l L~k2(j4iz23Wx)] L~k2(4IVzjZwy)I

ILtk2(-jUx) I1+Ll~k2j4 Vy)] 3l2-W) L :33v--u) L~2-;A 3Wx~) L[kl(4f2)+

3~2- 2 w ) 3f2 4  x2 u) 3 32( 3.ur2 vz-j2wy)I

Llk2(-;ux)] Llk2(j;vy)I 1+L~k24Wz)1 L02(2u vxZ LI~k24jWxjzI L~j4Q
L~k2(~c)] L~i(~ LI 2 z)

3 3k23U3)] 1+I 32vx) k(Z3 -])I

L~k2vx)] Ltk2uy)]0 ILfk2(vy~ux) +Lfkl2wz+ L[k2(uy)I

L[k2(wx)] 0 L~k2(uz)I Lfl22+ ILk2(wy)I ~ ~ k(u)

0 L[kI(2- L~k(-2l- Lfk2( wy)] L11c2(vx)) 1+L4k2(Wz+Vy)]
Lk2(wy)I k2(vz)]

R = [-Pulul, -PU2U 2, -PU3U 3, -PUIU 2, -PUlU 3, -Pu2U31T,

B- [ k -jpk -Zpk0,,0]

L pk k - 2-C2 k2 =1-C2 , k2 =CI -I
and P+pek3 '- 2 ,with C1 = 1.5, C2 0.6 as

empirically obtained (Launder et al. (1975)) FRS modelling constants.

System [3.56] is solved at every grid point directly by Gaussian elimination

[subroutine provided by Rao (1982)].

The direct inversion of a linear 6 x 6 system of equations at every grid point, at

every iteration would be prohibitive computationally. Numerical experimentation has
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shown that evaluating the Reynolds stresses every 20 iterations (while reevaluating viscous

fluxes every iteration for stability) gives rise to a convergent procedure.

Recalling the effective stress tensor for the ARS model:

[IauiJ au1I - aUk]
Tij -- 11 X +  i i j pkTj -2jpk [2.1k

axkJ1 3 [2.15]

By comparison, the effective stress tensor for the two-equation model used can be written:

+/u +u 9t,, r0., a,, ajj L]"ciJ = l' g xx +a xlf aJa-k lUt [axj + b- -] 3 3 xJ~f '  [3.57]

So for the ARSM, an "anisotropic eddy viscosity" can be identified:

Auij -p k T ij 1L ax 'xi)" 3 'i j-- [3.581

It has been found that this identification is useful in evaluating the numerical

stability of the turbulence model. Specifically, if the individual components of gi j , as

defined by equation [3.58], are all of the same order of magnitude as }Lt provided by the k-s

model, then the effective diffusivity arguments provided in the stability analysis of Section

3.3.3.3 remain valid. That is, the eddy viscosity computed in the k-s solution can still be

used to provide a local stable timestep, and the convergence rate of the numerical scheme

should not be significantly affected, when the ARSM is used.

To illustrate this, a flat plate turbulent flow computation was performed using
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1) the low Reynolds number k-e model, 2) the pure high Reynolds number ARSM, 3) the

hybrid model, with Y+match = 200. The convergence history for the computation using the

hybrid model showed some "peaking" behavior during the course of iteration. This

phenomena was traced to grid points whose local y+ values were very close to Y+match

during iteration. If this local value crosses Y+match, the other turbulence model is suddenly

used locally, and this gives rise to a very large local residual which in turn strongly affects

the RMS residual. To alleviate this problem, a weighting function approach was devised,

which blends the two models near Y+match- Specifically the viscous residuals are weighted

as follows:

Rviscou = WARSMRARSM + Wk-ERk-E

WARSM = I atch

where 2 tanh(p) +1, Wk-E = 1.- WARSM [3.59]

These weighting functions are plotted in Figure 3.14, for a clustering parameter 1 = 10.0,

which is the value used in the calculations presented using the hybrid model in this thesis.

In Figure 3.15, the convergence history for the blended hybrid model is seen to closely

compare to those of the two component models, thereby substantiating the stability

argument presented above for this case.

In the first section of the next chapter, the results of these flat plate computations

are presented.
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3.5 Computational Considerations

At the time of the writing of this thesis, the vectorized code executed at 4.2 x 10-5

CPU seconds / (gridpoint * iteration) on the NAS Cray Y-MP at NASA Ames Research

Center, when the low Reynolds number k-e model is used. As discussed above, the

convergence penalty for implementing a two-equation model in a purely explicit procedure

is small. The two additional transport equations, which require only partially vectorizable

source term and eddy viscosity computations give rise to an overall factor of 1.5 in

execution rate over laminar flow computations on a Cray 2. The current overhead

associated with computations using t',' hybrid k-e/ARS model is an additional 40 % for

three-dimensional calculations on the Y-MP. This overhead is due to computation of both

k-e and ARSM viscous flux residuals at every iteration, and re-evaluation of the Reynolds

stress components every 20 iterations.
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CHAPTER 4

PREDICTION OF TWO-DIMENSIONAL INTERNAL AND CASCADE FLOWS

In this chapter, results and interpretation of two-dimensional flow computations

are presented.

Two complex cascade flows are computed, for supersonic and low subsonic

freestream conditions. For the supersonic cascade, isentropic blade Mach number, shock-

boundary layer structure and wake loss profiles are compared with experimentally

measured values. Pressure distribution and boundary layer profiles of velocity and

turbulent kinetic energy are compared with data for the subsonic cascade.

4.1 Turbulent Flat Plate Boundary Layer Flow - Turbulence Model Validation

In Chapters 2 and 3, the formulation and numerical implementation of the

turbulence models incorporated in this thesis were presented. Stability analysis and

numerical verification results, including convergence histories for simple shear layer

computations, using a compressible extension of Chien's (1982) low Reynolds number k-s

model and a hybrid k-fe/ARS model, were presented. It remains to present accuracy

validation for these computations. These results are provided in this section.

A 33 x 33 computational grid was used for the flat plate computations. The grid and

freestrearn conditions were chosen to provide a Reynolds number based on boundary layer

thickness, Re8 = 80000, near the exit of the computational domain. This corresponds to

the flat plate measurements of Klebanoff (1954), against which the computational results

provided here are compared.
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For both turbulence models used, a low Reynolds number k-E model is used in the

very near wall region. Accordingly, it is appropriate, where practically feasible, to provide

near wall grid clustering such that y+ = I at the first grid point off of solid boundaries.

This reconciles with the observations of many authors (see Avva et al. (1990), for

example), that grid independent solutions using such models require such near wall grid

spacing.

To ensure that the first grid point off of solid boundaries, will be near a

prespecified value of y+, a standard empirical momentum integral relation for skin friction

on a turbulent developing flat plate flow is used (see Fox and McDonald (1985), for

example):

L =2p..V 2 (0.0577)
(Rex)I / 5  [4.11

Aywall TWO

Using the definition of y+, Yspeified = V , an expression for Aywall can be

obtained:

-+ (ReL)I/5 )I/2

Aywall = VySpec (i12V )1 [4.2]

V..L
ReL =f --L

where v , and L is taken as the plate length (or chord length, as it were). Because

Aywal is a weak function of Reynolds number (proportional to ReL1/10), equation [4.2]

provides an appropriate value of AYwau along the length of the plate.
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The grid spacing at the wall for the flat plate computation was 3.1 x 10-6 times the

plate length. The aspect ratio of near wall grid elements in thia extremely highly stretched

grid reached 30000 at the aft end of the plate. Uniform total pressure and temperature

profiles ivere specified, and the back pressure was set such that the free stream Mach

number was approximately 0.5 to accommodate the compressible formulation of the flow

solver. Three calculations were performed, using the low Reynolds number form of the

k-e model, the high Reynolds number form of the ARSM with no near wall treatment, and

the hybrid model, with Y+match = 200. As shown in Chapter 3, the artificial dissipation

levels were scaled by the square of the ratio of local velocity to free stream velocity.

In Figure 4.1, the predicted velocity profiles are plotted in inner variables at

Re8 = 80000, and compared against standard law-of-the-wall correlations. The k-c and

hybrid models match the correlations, whereas the high Reynolds number ARSM shows

poor agreement as expected. Klebanoff (1954) measured the turbulent kinetic energy

profile in the boundary layer, and his data are used for comparison with predictions of this

parameter in Figure 4.2. Again agreement is excellent for the k-e and hybrid models.

In Figure 4.3, the distribution of turbulence intensities, predicted using the hybrid

model are shown, and compared to Klebanoff s measurements. Comparison is good, with

'e notable exception that the hybrid model does not predict the distribution of energy

between - PU2U2, - pu 3u3 . This is a direct consequence of not explicitly modelling the

pressure strain termAij.w , presented in Chapter 2. Despite this modelling shortcoming, the

difference between the streamwise and wall normal intensities, is reasonably well

predicted, a prerequisite for predicting the influence of rotation on the turbulence structure

in a rotating boundary layer. Specifically, Reynolds shear stress source terms in the full

Reynolds stress and algebraic Reynolds stress equations are directly proportional to both

the difference between these intensities, and the rotation rate. The location of Y+match is
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Figure 4.2 Turbulent kinetic energy distributions for a turbulent flat plate flow. Experimental data due to

Klebanoff (1954) (symbols). Computations using: low Reynolds number k-e model (alternating long

dash-short dash), high Reynolds number ARSM model (solid), hybrid model (short dash).
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indicated in Figure 4.3. Preliminary efforts to validate the hybrid model for an isolated

rotational strain case were undertaken. Specifically, a rotating fully developed channel

flow, tested experimentally by Johnston et al. (1972), was computed. An appropriate

deflection of the mean flow was observed, as was the characteristic redistribution of

Reynolds intensities near the leading and trailing sides of the channel. Unfortunately a

converged solution for this flow was not attainable due to the compressible formulation of

the flow solver, and the fully developed nature of the measured channel flow. It is

anticipated that appropriate validation against a developing boundary layer subject to

spanwise rotation will provide more precise validation in regards to isolated rotational

strain.

The following cascade computations were performed with an earlier version of the

code , where the k and e equations were numerically decoupled (as defined in Chapter 3)

from the mean flow equations. Additionally, the cases were run in laminar mode for

several hundred iterations before the k-e model was turned on (see convergence histories

below). This strategy was used by the author in earlier versions of the code, to help reduce

the size of production terms in the turbulence transport equations upon "cold-start"

initialization.

4.2 Turbulent Flow Through a Supersonic Compressor Cascade Oprating at Unique

Incidence Condition

The first cascade to be investigated is the PAV- 1.5 supersonic compressor cascade

tested at DFVLR by Schreiber (1988). This pre-compression blade was designed

especially to investigate shock-boundary layer interaction with separation. At the test

freestrearn Mach number, a standoff leading edge shock forms, which gives rise to a

separated shock-boundary layer interaction aft of mid chord on the suction surface of the
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adjacent passage. Thc'ugh the measured absolute inlet Mach number was supersonic, the

blade row stagger angle was high so the axial component of the inlet velocity was

subsonic. This gives rise to the "unique incidence" condition wherein there exists a fixed

relationship between inlet Mach number and inlet flow angle. This phenomena as well as

the complex wave interaction field within the passage and shock-boundary-layer interaction

provide a challenging test case for both numerical scheme and turbulence model.

Prediction of the unique incidence angle requires reasonably good resolution of both the

leading edge geometry and the leading edge shock structure.

The computed case was experimentally tested in air at an inlet Mach number of

1.53 and a maximum attainable static pressure ratio of 2.13. The measured axial velocity

density ratio (AVDR) of 1.02 indicated that the flow was close to two-dimensional. The

Reynolds number based on chord was 2.7 x 106. The inlet turbulence intensity was

measured using a Laser-two-focus (L2F) velocimeter to be no more than 1 %, which is the

value used in the computations. As mentioned above, the inlet Mach number is supersonic,

but axial velocity at the inlet to the computational domain is subsonic allowing left running

characteristics to propagate out of the inlet plane. For this reason, subsonic inlet boundary

conditions were specified : p. = 101325 N/m 2, T. = 300 K, Vo**= 379.5 m/s. At the

subsonic exit plane the back pressure, p, = 56500 N/m2, was specified corresponding to

the experimentally measured pressure ratio of the cascade, P2/PI = 2.13.

The 129 x 100 computational grid used was generated using Sorenson's (1980)

GRAPE code, modified by Grski (1983) to generate H-grids, and is shown in Figure 4.4,

where only every other grid line in the and il directions are plotted, for clarity. The blade

normal grid spacing at the wall was prescribed as .000011 chord. This yielded values of

y+1- I at grid points adjacent to the walls. Except in the immediate vicinity of the leading
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Figure 4.4 129 x 100 computational grid for the PAV-1.5 cascade.

For clarity, only every other grid line is shown in both 4 and il directions.
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and trailing edges, the suction and pressure surface boundary layers had at least 9

grid points with values of y+ < 20.

The convergence history for this computation is shown in Figure 4.5. It took

approximately 6500 iterations for this calculation to converge as measured by the invariance

of total number of supersonic gridpoints in the field. It was not possible to "cold start" the

initialized flowfield at the specified pressure ratio, because the code became rapidly

unstable when this was attempted. Rather, the back pressure had to be increased in a

stepwise fashion with iteration (notice "jumps" in convergence at iteration 500, 1000,

2000), until the experimentally imposed pressure ratio could be specified at iteration 2000.

The "unhealthy" convergence history is due in part to the highly clustered grid and also to

the nearly choked operating condition.

At the time it was run, the solution using the two-dimensional version of the code

required approximately 40 minutes of CPU time on a Y-MP. For this cascade

computation, At, < At, for 40.0% of the grid points in the domain at convergence. The

artificial dissipation was scaled as in equation [3.20], where the reference velocity, Vref =

a**M**, was used. With this scaling, a significant recirculation zone exists aft of a shock

boundary layer interaction region aft of mid-chord on the suction surface. This region,

extends well out into the passage (nj _ 25), and reattaches a short distance downstream.

When the velocity scaling was used exactly as presented in Chapter 3, significant local

oscillations in flowfield properties were seen to develop in this region, immediately prior to

the code blowing up. This is not surprising since though local velocities are small in the

recirculation zone, physical diffusion terms in the momentum equations are also small.

Therefore, significant artificial dissipation is required to stabilize the solution in this region.

The solution was stabilized in an "ad-hoc" fashion for this calculation, by implementing the



108

0 13000

-2 11000

-4
9000

# Supersonic
) Points

-6 Io~oRM AP 7000

logl ORMS(500
-8 \v 4  5000

NSUP

-10 3000

0 4000 8000 12000

Iteration #

Figure 4.5 Convergence history for PAV-1.5 cascade computation.
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velocity scaling given in equation [3.20], only in the immediate vicinity of the blade

surfaces (j < Jspecified).

In Figure 4.6, a hand rendering of the shock wave pattern deduced from Schlieren

visualization has been reproduced from Schreiber (1988), alongside the computed shock

wave pattern presented as divergence of velocity contours. The key features of the

flowfield are evident in this diagram, including the bow, lamda and passage shocks. In

both experiment and computation, the bow shock is seen to impinge on the suction surface

boundary layer of the adjacent passage. This gives rise to a lambda shock structure, a rapid

thickening and separation of the boundary layer, and a Mach reflection which impinges on

the pressure surface of the same passage. The high pressure ratio operating condition of

this test case gives rise to a normal passage shock which impinges upstream of midchord

on the pressure surface. This feature is also evident in both experiment and computation.

The computation also shows some evidence of an oblique trailing edge shock, typical of

supersonic compressor cascades at high operating pressure ratios.

In Figure 4.7, the predicted isentropic blade surface Mach number is plotted

against the experimental values. The calculation and experiment show fairly good

agreement. The features labelled A, B and C in Figure 4.7 correspond to local

compression regions where the bow shock impinges on the suction surface, the Mach

reflection impinges on the pressure surface and the passage shock impinges on the pressure

surface.

In Figure 4.8, the computed total pressure ratio is compared with traverse probe

measurements at an axial location 0.09 chord downstream of the cascade exit plane. The

wake profile and loss distribution is reasonably well predicted, with the losses associated

with the lambda shock system underpredicted. The wake centerline total pressure ratio is
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Figure 4.6 Shock wave pattern for PAV - 1.5 cascade. Divergence of

velocity contours (-300 to -4800 by -500 [s-1]). In this diagram, the top two

passages show computed contours. The bottom passage is the shock wave

pattern deduced from flow visualization and L2F measurements, adapted from

Schreiber (1988).
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Figure 4.7 Isentropic blade surface Mach numbers and shock structure

identification for PAV-1.5 cascade computation. Calculated (solid line) and

experimental values (symbols). The bottom half of the plot shows the shock

wave pattern deduced from flow visualization and L2F measurements, adapted

from Schreiber (1988).



112

1.0 -

0.9
0

0.8

Po 2 /Po I

0.7

0.6
pressure surface suction surface

0.5 ! !
0.0 1.0 2.0

-n/t

Figure 4.8 Total pressure ratio profile 0.09 chord downstream of trailing edge

for PAV-1.5 cascade computation. Calculated (solid line) and experimental

values (symbols).



113

predicted reasonably well considering the difficulty in L2F measurement at this location. It

is noted that the results presented are not fully grid independent. Small changes in the

pitchwise grid clustering near midpassage gave rise to as much as a 2% chord difference in

the impingement location of the bow shock on the suction surface and a 5% chord

difference in the location of the passage shock. The loss distribution aft of the blade was

hardly affected, but the blade surface Mach number distributions varied noticeably.

In Figure 4.9, computed velocity and turbulence intensity profiles at four locations

on the suction and pressure surfaces are presented. Along the suction surface, the

predicted boundary layer is seen to remain quite thin for this high Reynolds number flow,

thickening to about .01 chord at midchord. At .75 chord the boundary layer has separated

due to the bow shock impinging at .67 chord, and the boundary layer thickness is seen to

have rapidly increased to approximately .03 chord. At .90 chord, the separated boundary

layer has grown to .05 chord. The turbulence intensity profile behaves in a manner

consistent with a boundary layer separation. Namely, aft of the onset of separation the

turbulent kinetic energy boundary layer thickens rapidly and the peak in intensity appears

well away from the blade surface. Careful examination of Figure 4.9 also shows that the

turbulence intensity has been amplified well outside of the boundary layer. This

amplification is presumably due to the influence of the shock on the normal stress

components of the production term in the turbulent kinetic energy equation.

The predicted boundary layers along the pressure surface are seen to remain quite

thin along the entire blade. The influence of the passage shock at .40 chord separates the

boundary layer at .50 chord, but the flow reattaches and the boundary layer thickness

remains approximately .02 chord from .75 to .90 chord. Similar trends are noticed in the

local turbulence intensity profiles, with the typical peak away from the blade just aft of

separation, returning very close to the wall some distance after reattachment.
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Figure 4.9 Local boundary layer velocity and turbulence intensity profiles at

four chord locations along the suction and pressure surfaces for the PAV-1.5

cascade computation. Locations a, b, c, d correspond to .25, .50, .75, .90

chord respectively. The hash marks correspond to the estimated boundary layer

thicknesses reported by Schreiber (1988).



115

Schreiber (1988) provided measured loss coefficients at maximum attainable

cascade pressure ratio for a number of operating inlet Mach numbers. For comparison, the

code was run at two additional operating points within the envelope of the experimental

tests (P2/Pl = 2.01, Minlet = 1.45 and P2/Pi = 2.28, Minlet = 1.58). Figure 4.10 shows

computed total pressure loss coefficients at all three operating points computed along with

the envelope of experimental loss coefficients. Computed values lie within the envelope of

experimental values. It is noted that Schreiber attributes the scatter in measured loss

coefficient to variations in experimental axial velocity density ratio.

Predicted and measured performance parameters for this cascade, operating at the

design condition (P2/Pl = 2.13, Minlet = 1.53) are presented in Table 4.1.

Table 4.1. Comparison of Performance Parameters for PAV-1.5 Cascade

Flowfield Parameter

Measured Computed Difference

CLa = 0.43 0.38 - 12 %
b

CO 0.144 .149 3.4%

01 -1.80 -1.30 0.50

P2 2.70 3.10 0.40
s/csess .63 .67 6.3 %

s/csepp, 0.40 .40 =- 0.0

AVDR 1.02 1 NA

(Lift per unit span)iVm

a lift coefficient computed from "5prV 2m

Po - Po
pressure loss coefficients computed from OPo - P.
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Figure 4.10 Total pressure loss coefficients at several cascade operating points.
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4.3 Turbulent Flow Through a Subsonic Cascade of Double Circular Arc Profiles with

Flow Reversal

The second cascade flow to be computed is the Applied Research Laboratory

(ARL) double circular arc cascade tested at Penn State by Zierke and Deutch (1989). The

computed case was tested at a negative incidence of 1.5 degrees. The working fluid was

air at standard atmosphere with an inlet velocity of 32.9 rn/s (inlet Mach number = 0.1).

The Reynolds number based on chord was 5.0 x 105. Freestream turbulence intensity was

measured at 1.8 % at 20 % chord along the suction surface, which is the value used in the

computation. The axial velocity ratio was measured to be between 0.97 and 1.03,

indicating that the flow was close to two-dimensional.

The 129 x 91 computational grid used was generated using the GRAPE code, and

is shown in Figure 4.11. Grid spacing in the blade normal direction was set to .000023

chord on the blade surfaces. This yielded values of y+ -= 1 at grid points adjacent to the

walls. Except in the immediate vicinity of the leading and trailing edges, the suction and

pressure surface boundary layers had at least 11 grid points with values of y+ < 20.

It was only possible to obtain a steady solution when a coarse "preliminary" grid

was used for this case. These coarse grid calculations overpredicted skin friction along the

entire length of the suction surface, so the flow remain attached and a steady state solution

was achieved. The more refined grid, shown in Figure 4.11, adequately resolved both

inner layer and core flow regions yielding more accurate skin friction and boundary layer

profiles. However, because both calculation and experiment show regions of mean flow

reversal near the trailing edge, it was not possible to obtain a steady solution.
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Figure 4.11 129 x 85 Computational grid for the ARL DCA cascade.
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The convergence history for this computation is shown in Figure 4.12. It took

approximately 7000 iterations for this calculation to acquire a 4.5 order of magnitude drop

in the RMS density residual. At the time this computation was performed, this

corresponded to approximately 36 minutes of CPU time on the Y-MP. However as shown

in Figure 4.12, after 7000 iterations, the residual changes begin to increase and then level

off. This is attributed to periodic shedding of vorticity from the aft portion of the suction

surface. For this cascade computation, At, < At, for 7.5 % of the grid points i'. the

domain when the calculation was stopped at 14000 iterations.

Despite the lack of a steady state solution, the flow along the blade remained

relatively unchanged after 7000 iterations except for quasi-periodic shifts in the boundary

layer velocity and turbulence intensity profiles near the aft end of the suction surface. The

measured flow also showed a small region of mean backflow near the trailing edge of the

blade (Zierke and Deutsch, 1989), and for that reason was also probably unsteady. In

Figure 4.13, comparison is made between computed blade surface pressure coefficient and

measured values. Agreement is good along both blade surfaces. The oscillations in the

pressure distributions near the leading and trailing edges in Figure 4.13 are caused by the

velocity scaling of the artificial dissipation. The artificial dissipation was scaled as in

equation [3.20], where the reference velocity, Vref = a**IVI . The H-grid used gives rise to

highly skewed regions near the relatively blunt leading and trailing edges of this

configuration, causing the velocity scaling presented "as is" to give rise to these

oscillations.

In Figure 4.14, the predicted boundary layer profiles at three chordwise locations

on the suction surface are plotted with those measured by laser Doppler velocimeter.

Agreement is excellent at 20 % chord and 50% chord and reasonable at 90 % chord. Local

turbulence intensity profiles are presented for three chordwise locations on the suction
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Figure 4.12 Convergence history for ARL DCA cascade computation.
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surface in Figure 4.15. As above, agreement between calculation and experiment is good

at the first two stations, and reasonable in the aft portion of the blade.

Predicted and measured performance parameters for this cascade are presented in

Table 4.2.

Table 4.2. Comparison of Performance Parameters for ARL-DCA Cascade

Flowfield Parameter

Measured Computed Difference

CLa  0.82 0.88 7%
b

(0 0.094 0.111 18%

01l -1.50 prescribed NA

032 14.10 13.00 1.10
S/Csep.s .45 fluctuates near 0.90 NA

s/Csepps none none NA

AVDR 0.97-1.03 1 NA

(Lift per unit span).LV mCL= =  5m~
a lift coefficient computed from "5poV 2m

Po- " Po
(f=pressure loss coefficients computed from "p*2
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Figure 4.15 Local turbulence intensity profies at three chord locations along

the suction surface for the ARL DCA cascade computation.

Calculated (solid line) and experimnental values (symbols).
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CHAPTER 5

PREDICTION OF THREE-DIMENSIONAL INTERNAL

AND TURBOMACHINERY FLOWS

In order to provide three-dimensional validation of the turbulence modelling and

numerical methodologies, the code was used to predict the pressure distribution, primary

velocity and secondary flows in an incompressible, turbulent curved duct flow for which

CFD validation quality data is available. Also, a subsonic compressor rotor passage, for

which detailed laser, rotating hot-wire and five-hole pressure probe measurements have

been made is computed. Detailed comparisons between predicted and measured core flow

and near wall velocity profiles, wake profiles, and spanwise mixing effects downstream of

the rotor passage are presented for this case.

5.1 Turbulent Flow in a 90O Bending Duct of Square Cross-Section

The ability of the present approach to predict three-dimensional turbulent flows

was tested by computing an incompressible duct flow investigated experimentally by

Taylor et al. (1981). The bulk velocity of water through the 900 bending duct of square

cross-section was 1.00 m/s. This corresponds to a Reynolds number based on hydraulic

diameter of approximately 40000 and a Dean number of approximately 18700. A short

inlet extension to the duct was designed by the experimenters to provide thin inlet boundary

layers at the bend entrance. In earlier work by Humphrey et al. (1981), the same facility

was fitted with a longer inlet section so as to provide fully developed turbulent velocity

profiles near the bend entrance. The thinner inlet velocity profiles of the present case give

rise to weaker, but significant, secondary motions in the bending portion of the duct, and



therefore this case provides an appropriate three-dimensional test case for the numerical

scheme and the turbulence model.

An interesting difficulty in computing this flow arises from the fact that the velocity

profiles near the bend inlet are significantly influenced by the development of secondary

motions of the second kind in the the straight duct section upstream of the bend. Accurate

computation of secondary flows within the duct relies primarily on rotational inviscid

transport of accurately prescribed near wall inlet transverse vorticity profiles [see

Lakshminarayana and -orlock (1973) for example]. However, isotropic eddy viscosity

models are incapable of predicting the Reynolds stress anisotropies which give rise to

secondary motions of the second kind and therefore to the "bowed" inlet velocity profiles

these motions give rise to. This difficulty seems to discount the use of a computational grid

with an inlet extension corresponding to the experimental apparatus, if the present two-

equation turbulence model is used. In the present work, this difficulty is overcome by

setting the inlet boundary very close to the bend inlet. Measured velocity and pressure

distributions are used to provide inlet boundary conditions which are physically plausible

enough to allow a convergent Navier-Stokes solution despite the proximity of the inlet

boundary to regions where significant flowfield gradients exist.

In Figure 5.1, the 81 x 41 x 21 computational grid used for this calculation is

shown. The half duct was computed here to exploit the symmetry of the problem. Grid

spacing at the wall was 0.00033 times the duct height which gave rise to wall adjacent grid

point values of y _ 1.5 along the entire length of the duct. The inlet extension was 1/4

hydraulic diameter upstream of the bend entrance. Measured primary velocity magnitudes

and the radial static pressure distribution at this location were interpolated onto the inlet grid

plane. A composite law-of-the-wall due to Spalding [see White (1974) for instance] was

used to approximate the primary velocities between the wall and the first measurement
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Figure 5.1 81 x 21 x 41 Computational grid and notation for
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location away from the wall (0.1 times the duct height). The simulation was run with an

average inlet Mach number close to 0.2, and the subsonic Riemann extrapolation boundary

condition described in Chapter 3 was used, to accommodate the compressible formulation

of the flow solver. Inlet total pressure and temperature profiles were specified from the

above prescriptions and the assumption of constant inlet static temperature. Additionally,

zero inlet flow angles and a back pressure adjusted to pass the mass flow necessary to

achieve Reynolds number similarity were specified. Inlet turbulence intensity was set to

3% corresponding to approximate measured inlet average intensity. The artificial

dissipation was scaled by (VlocaVref)2 , as in equation [3.20],where the mean inlet velocity

was used as the reference velocity, Vref.

The code was run for 3000 iterations, at which point the RMS density and

turbulent kinetic energy residuals had dropped 3 orders of magnitude. The computation

was then stopped, since the pressure and primary and secondary velocity fields remained

unchanged after about 2500 iterations. The convergence history for this computation is

shown in Figure 5.2. This computation required approximately 7 hours on an

IBM 3090-600S. At convergence, the parabolic stability constraint was less restrictive than

the hyperbolic constraint for all of the grid points in the domain, that is At, > At c

everywhere. This is due to the fact that since the duct walls (and hence the near wall

damping effects in the low-Reynolds number turbulence model) extend from inlet to exit,

there is no region in the computed flow where both large effective diffusivities and large

grid metrics occur. Therefore, the first term in equation [3.46] is less than the second at

every grid point.

In Figure 5.3, the predicted strearnwise distribution of pressure coefficient along

the symmetry plane is presented. Agreement between the experiment and the computation

at all five radial locations is very good. The high wave number pressure oscillations near
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the inlet section are attributed to the proximity of the imposed inlet boundary conditions to

the bend.

Streamwise velocity contours are plotted at six streamwise locations in Figure 5.4,

and show reasonably good agreement with the experimental data. The nearly exact

correspondence at the inlet (X/D = -0.25) is due to boundary condition specification from

the data. The development of the secondary vortex at the inner wall and its effect on

velocity defect in the mainstream is captured accurately. Both the size of this vortex and the

magnitude of the streamwise velocities in this secondary flow region are well predicted.

The secondary velocities are shown in Figure 5.5. Here again, agreement is good. The

ability of the code to capture the far downstream flow, where considerable redistribution of

the flowfield has occurred is evident from both Figures 5.4 and 5.5.

The good agreement between experiment and computation achieved in this

validation study provides evidence that the numerical and modelling strategies used can

yield acceptable solutions of complex three-dimensional internal flows.

5.2 Subsonic Compressor Rotor Operating at Peak Pressure Rise Coefficient

As stated in Chapter 1, the ultimate goal of this thesis work is to provide accurate,

detailed predictions of viscous flows in complex three-dimensional turbomachinery

configurations. Accordingly, the code has been utilized to predict the flow field in a

subsonic rotor operating at peak pressure rise coefficient. The so called "Penn State

Compressor Rotor" has a hub to tip ratio of 0.5 with an outer annulus wall diameter of

0.936 m. The rotor has 21 blades. The chord length increases from 0.124 m. at the hub to

0.154 m. at the tip. The blade stagger angle increases from 22.50 at the hub to 45.00 at the
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computation. a) Computed secondary velocity vectors [solid lines indicate location

of traverses in b)]. b) Scaled radial velocities, V/Vb, at five radial locations.

Calculated (solid line) and experimental values (symbols). See Figure 5.1 for notation.
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tip. The tip clearance was either 2 mm or 3.3 mm for the various experimental tests as

specified below.

The operating conditions for the computed case are as follows : flow coefficient,

(D = 0.50, pressure rise coefficient (peak), ' = 0.55, rotor shaft angular velocity, co = 113

s-1, tip velocity, U = 53 m/s. The Reynolds number of the flow based on chord length at

midspan and rotor tip speed was 480,000.

A large amount of laser Doppler velocimeter, hotwire and five hole pressure probe

data is available for this rotor. The axial and tangential components of relative velocity

were measured from blade to blade at various chordwise locations inside the passage, using

an ensemble averaging technique (Popovski and Lakshminarayana (1986)). The flowfield

near the blade surfaces was measured using a two sensor miniature hotwire probe, rotating

with the rotor (Lakshminarayana and Popovski (1987)). Additionally, the wakes

downstream were measured recently by Prato (1990) using a five hole pressure probe. For

the passage flow measurements, the tip clearance was 2 mm. The blade tips were shaved

to provide a 3.3 mm tip clearance prior to the wake measurements.

In Figure 5.6a, the 89 x 45 x 45 (180225 points) computational grid used for this

calculation is shown. This H-grid was generated using a interactive program developed by

Beach (1990), which is described in detail there. The normal grid spacing on the blade

surfaces was 4.7 x 104 span. The normal grid spacing at the hub and shroud was 1.9 x

10-3 span. This yielded values of y+- 6 at grid points adjacent to the blade surfaces and

y+ = 30 along the endwalls. It is noted, that for accurate implementation of nearwall two-

equation turbulence models, values of y+ should be closer to I at the first gridpoint off the

wall. Resource limitations allowed only 45 blade to blade and hub to casing grid points.

For this high Reynolds number rotor flow, the resulting grid generation compromised
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45 computational grid. b) detail of "thin blade" tip clearance gap at midchord. c) hub-leading edge

detail showing relative flow velocities at stationary-rotating hub interface in relative frame.
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between refined nearwall and core region grid resolution in order to provide reasonable grid

clustering everywhere.

In order to account for tip clearance flow, the grid was modified in the immediate

vicinity of the shroud, as shown in Figure 5.6b. This allows for three periodic flow

through grid points in the gap region. Such a "thin blade" tip clearance approach has been

undertaken by several researchers [see Bansod and Rhie (1990) for example]. In the

compressor facility, the location of the interface between rotating and stationary segments

of the hub is 3 mm upstream of the leading edge at the root. To accommodate this in the

flow computation, a no-slip relative velocity of -orhub is enforced at all grid points on the

hub for which x < xile - 3 mn. This is illustrated in Figure 5.6c. Measured inlet axial and

tangential velocities, provided in Popovski and Lakshminarayana (1986), were interpolated

onto the inlet plane to provide the rotor flow inlet boundary conditions discussed

previously. A composite law-of-the-wall due to Spalding [see White (1974) for instance]

was used to approximate the total velocities between the endwalls and the first measurement

location away from these walls. The inlet turbulence intensity was specified as .02, and the

inlet turbulence length scale as .01 times the blade spacing at midspan.

The code was run for 5200 iterations, at which point the RMS density and

turbulent kinetic energy residuals had dropped 5.0 orders of magnitude. The computation

was then stopped, since the streamwise and radial near-wall velocity profiles remained

unchanged after about 4500 iterations. The convergence history for this computation is

shown in Figure 5.7. This computation required approximately 25 hours on a Cray 2. At

convergence, the parabolic stability constraint was more restrictive than the hyperbolic

constraint, that is At, <Atc, for 6.5 % of the grid points in the domain. The artificial

dissipation was scaled according to equation [3.20], where the rotor tip speed, U, was

used as the reference velocity.
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Passage Flowfield

In Figure 5.8, the blade to blade axial velocity distributions, obtained at several

spanwise locations by Popovski and Lakshminarayana (1986), using LDV measurements,

is presented with the Navier-Stokes predictions. The rotational inviscid flow features are

seen to be well captured by the simulation, including immediately upstream of the leading

edge where the presence of the blade gives rise to small velocity magnitudes due to the

proximity of the stagnation point (inviscid effect). The effect of tip clearance flow, which

interacts with the core flow near the tip (r/rtp = 0.96) to produce a velocity defect near the

midpassage is captured qualitatively by the code.

Detailed blade boundary layer measurements were made for this operating

condition, using a rotating hot wire, by Lakshminarayana and Popovski (1987). In

Figures 5.9 and 5.10, the predicted streamwise and radial velocity profiles are compared

with measured values. The streamwise boundary layer velocity profile near the hub and

midspan regions is captured with reasonable accuracy. The region r/rtip = 0.92 - 0.96

shows significant discrepancy, in the near wall region. The measured profiles in the near

wall region of the tip sections, r/rtip = 0.92 - 0.96, show a tendency to separate, and this is

not captured well by the simulation. This is a region of large radial boundary layer

transport interaction with the leakage and secondary flow. Considering these complexities,

the predictions are reasonably good.

The radial velocity profiles are shown in Figure 5.10. The agreement between

experiment and computation is good up to r/rbp = 0.92, but deteriorates as the casing is

approached. Some of the discrepancy is attributed to poor resolution of tip clearance flow

and the resulting blade unloading in this region. The radial velocities are strongly
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dependent on both the streamwise velocity defect near the blade surface, and the local radial

pressure gradient. Good prediction of radial velocities at r/rtip = 0.58 and 0.75 is due to

good prediction of streamwise velocity profiles in this region (compare Figure 5.9). The

discrepancy between radial velocity data and prediction from r/rtip = 0.92 to 0.96 is due to
aWs

poor prediction of streamwise velocity. The predicted nearwall gradients, Dn (Figure

5.9), in these regions are smaller than their measured values. This gives rise to large

discrepancies between measured and predicted radial velocities in the tip regions (Figure

5.10).

Rotor Wakes

Recently, Prato (1990) obtained extensive wake flow measurements for this rotor

flow. In Figures 5.11 to 5.13, measured axial, relative tangential and radial velocity

profiles in the near and far wake are compared with computed profiles. Agreement

between calculated and measured profiles is very good. Comparisons are included only for

three radius ratios, r/rd = 0.57, 0.73 and 0.86. Agreement in the near casing region, r/ri p

= 0.96, was not good, due to the dominant tip vortex physics in this region and the

relatively crude gap modelling undertaken herein. The simulated wake thicknesses and

spreading rates are good. Wake centerline velocities are all well predicted, as is wake

spreading rate. The fairly accurate prediction of wake radial velocity profiles, as seen in

Figure 5.13, is encouraging, considering the low relative magnitude of these spanwise

flows. The wake data at r/rip = 0.57 shows the influence of secondary flow, with both

inward and outward radial velocities. Blade rotation gives rise to radially outward

components along both the suction and pressure surface boundary layers, while near the

hub, spanwise secondary flow components are radially outward on the suction side and

inward on the pressure side. Thus the two effects are additive on the suction side and
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Five hole probe measurements due to Prato (1990) (symbols) and computed distribution-, (solid lines).
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opposing on the pressure side. This effect has been measured as well as predicted as seen

in the wake profiles presented in Figure 5.13 (r/rtip = 0.57, s/c= 1.02).

Spanwise Mixing Effects and Losses

In Figure 5.14, spanwise distributions of circumferentially averaged axial velocity

and absolute flow angle are presented at five downstream locations, ranging from the very

near wake to the far wake regions. Agreement between experiment and computation is

excellent except near the tip. The simulation captures well the radial distribution of these

quantities through the extent of the wake. Also, the streamwise increase in V,, and decrease

in absolute flow angle near both endwalls is captured.

In Figure 5.15, the computed contours of relative stagnation pressure loss

coefficient are presented for grid planes coincident with the blade trailing edge and the exit

of the computational domain in the far wake. A number of sensible and interesting flow

features are apparent in these plots. The loss contours at the trailing edge plane (Figure

5.15a) reveal the presence of boundary layers near the blade surfaces where peak loss

coefficients as high as 0.50 are predicted. The presence of secondary flow in the hub wall

region and the resulting migration of low momentum fluid toward the suction side is

indicated by the presence of a large loss region near the intersection of the suction surface

and hub wall. The presence of high losses near the outer wall reveal the qualitative effect

of leakage flow. The scraping vortex (of sm,'i radius) at the intersection of the pressure

surface and the annulus wall is also captured qualitatively by the computation.

The loss contours far downstream (Figure 5.15b) reveal an interesting phenomena

related to spanwise and lateral mixing downstream of the blade row. The wake spreading

(compare Figures 5.11 to 5.13), decreases losses near the wake centerline and increases
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lines).
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losses away from it. The effect of transverse mixing increases losses substantially

everywhere except in the inviscid core region. The inviscid core region is located

approximately in the middle third of the passage, where the losses are nearly zero. The

comer flow loss region (at the intersection of suction surface and hub wall) has grown both

in the blade to blade and spanwise direction. The radial velocities in the wake on the

suction side have transported and elongated this loss region to higher radius.

An interesting phenomenon is identified in the tip region of Figure 5.15b. Here

the losses have not only decreased, but very close to the wall negative loss coefficients are

predicted. This is caused by spanwise and lateral mixing due to wakes, leakage vortices

and secondary flows. This is consistent with the spanwise mixing analysis carried out by

Adkins and Smith (1982), whose results have been reproduced in Figure 5.16. Their input

loss distribution was based on empirical correlations. The computation was based on a

spanwise mixing analysis. The measured values indicate negative loss coefficient near the

outer wall, consistent with the present computational results. Additionally, the PSU rotor

computation predicts that the loss core in the annulus wall region is washed out by mixing.

This is clear evidence that the high loss region observed at the trailing edge in the annulus

wall region is "peeled off" by secondary flows and the entire loss core region is convected

and diffused to inner radii. The spanwise mixing effects are thus simulated by this Navier-

Stokes code, supporting the physical phenomena postulated by Adkins and Smith.

The passage averaged (mass weighted) losses just downstream of the trailing edge,

both measured by Prato (1990) and predicted by the present authors, are shown in Figure

5.17a. The profile losses, away from the endwalls are captured with reasonable accuracy.

Underprediction of losses at hub and midspan regions are consistent with the

underprediction of wall shear stresses along the blade surfaces, evident upon close

examination of Figure 5.9. The data includes one point in the tip region and the prediction



150

STATOR LOSS COEFFICIENTS

Tip 0 M

0.2 /

0.4 I

immersion 10
I Calculation

0.6 I
Test

lflput

0.6 -

0~
Hub 1 77

-0.2 -0.1 0 0.1 0.2 0.3 -. 4

Loss Coefficient
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Research Compressor. This figure is reproduced from Adkins and Smith

(1982).
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is poor there. The losses predicted approximately one chordlength downstream are shown

in Figure 5.17b. The spanwise mixing phenomena, referred to above, decrease losses in

the tip region, and this feature is captured by the code. Major redistribution of losses occur

only in the tip region, where intense spanwise and lateral mixing due to leakage flow,

secondary flow and wake radial velocities occur. This is consistent with the results of

Adkins and Smith (1982).

Overall Performance

Computed and measured flow coefficients and pressure rise coefficients are

presented in Table 5.1.
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Table 5.1. Comparison of Performance Parameters for

Penn State Compressor Rotor

Flowfield Measuredb Computed %

Parametera Difference

Flow 0.50 0.495 1.OC

Coefficient,

Pressure 0.55 0.563 2.4

Rise

Coefficient,

-_Po2-Pol

a *EJYU dA/A, 27 00U jPd

b Values from Lakshminarayana and 'Popovski (1987)

c Note that close agreement for is due to choice of inlet boundary condition (see

discussion above).

It it evident that the overall pressure rise coefficient (Table 5. 1) as well as overall

losses (Figure 5.17) are reasonably well predicted.
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CHAPTER 6

TRANSONIC CENTRIFUGAL COMPRESSOR COMPUTATIONS

In this chapter, results of computations of the flowfield within a modem transonic

centrifugal compressor stage are presented and interpreted. These results are compared

with available L2F meridional velocity measurements within the impeller passage, shroud

static pressure measurements and overall performance measurements. First, solutions

using the low Reynolds number k-E- model are provided. The hybrid k-E / ARS model was

also used to compute this flow, both with and without incorporation of the production by

system rotation terms (Rij in equation [2.14]) included in the model, and results of these

computations are also included.

6.1 Background

The centrifugal compressor chosen for detailed computational study was designed

and tested by Krain et al. (1988, 1989). The low specific speed impeller (Ns = 80) has 24

straight blade surfaces (hub to tip) to allow flank milling manufacture, and a 300

backsweep. In Figure 6.1, a photograph of the impeller is reproduced from Krain (1988).

In Figure 6.2, the periphery of the computational grid used in the simulations is provided.

Except for the modern impeller wheel, the experimental facility used by Krain was the same

as that used by Eckardt (1975, 1976), with a constant area vaneless diffuser to allow a

wide operating range. As seen in Figure 6.2, the diffuser flowfield was also computed. In

Figure 6.3, experimentally obtained performance maps for the stage have been reproduced

from Krain (1988), and the operating point computed is indicated. The design point was

chosen for the present calculations. The flow parameters corresponding to this operating

condition were: mass flow rate = 4.0 kg/s (. 167 kg/s each passage), maximum inlet
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Figure 6.1. Impeller wheel tested experimentally by Krain (1988), and inves~tigated

comnputaztionally in this chapter. This fi~,ure was reproduced from Krain (1988).
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Figure 6.2 Periphery of computational grid used in numerical simulation studies,

showing impeller and diffuser sections of centrifugal compressor stage.
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This figure was adapted from Krain (1988).
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relative Mach number = 0.8 (at shroud), machine rotation rate = 22,363 rpm,

PO,diffuser exit/PO,impeller inlet - 4.0:1.

In Figures 6.4 and 6.5, meridional and streamwise views of the 59 x 27 x 27

computational grid (43011 grid points) used for this calculation are shown. Also

appearing in Figure 6.4 are the locations of the experimental laser planes used by Krain and

referred to in the results to follow. The experimentally measured impeller wheel was fitted

with a spherical nose cone. For the computations, a cusped spinner cone was

implemented, as shown in Figure 6.4, to accommodate the H-grid topology of the code.

One of the few practicalities in computing centrifugal compressor flowfields arises from the

fact that the impeller flowfield is dominated by shear layers which encompass the entire

passage. For this reason, nearly grid independent solutions were obtained in the present

study, by using 27 grid points in the blade to blade and hub to tip directions. This

phenomenon has also been noted by Hah and Krain (1989) (28704 grid points), and is

apparently the reason for the relatively coarse cross stream grids used in centrifugal

compressor calculations by Rhie et al. (1985) (14250 grid points), Dawes (1988) (17051

grid points) and Choi and Knight (1989) (81600 grid points).

The grid was generated algebraically using the impeller geometry provided by

Krain and Hoffmann (1989, 1990), and a grid clustering routine provided by Basson

(1991). Krain (1990) measured the impeller inlet and exit tip clearance at design operating

speed to be 0.5 mm and 0.2 mm, respectively. The tip gap was varied linearly along the

shroud from inlet to exit in the grid generation procedure. As with the rotor flow

computation presented in Chapter 5, a "thin blade" tip gap approximation is used in the

present calculations. As shown in Figure 6.5, eight grid points were used to resolve the

gap region. Additionally, the leading and trailing edges were cusped over two streamwise

grid points. Wall normal grid spacing was 4.4 x 104 times the inlet span along the hub
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Figure 6.4 Meridional view of 59 x 27 x 27 computational grid for Krain impeller

computation. Streamwise grid indexing and location of experimental laser planes are

indicated for reference.
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Figure 6.5 Cross stream views of 59 x 27 x 27 computational grid for Krain impeller

computation. a) Impeller inlet grid slice, b) grid slice near impellei- exit and c) tip gap

detail at inlet grid plane.
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and 2.2 x 10-4 iimes the inlet span on the blade surfaces. This clustering yielded converged

values of y+ ranging from 2 to 7 along the hub endwall and both blaC surfaces at

midchord, for the k-e solution provided below.

As discussed previously, curvature, rotation and viscous physical phenomena

strongly influence the impeller flowfield, especially in the aft portions of thc passage.

Specifically, strong secondary motions, caused by turning of blade and endwall boundary

layers, and coriolis forces, influence the flow development as illustrted scematically in

Figure 6.6a. In this figure, the secondary flow effects labelled A through D correspond to:

A) Secondary flows arising from axial to radial turning of blade boundary layers.

B) Secondary flows arising from axial to tangential turning of endwall boundary layers.

No direction convention is provided for this effect, since endwall boundary layers are

convected towards the suction side due to tangential to axial turning in the inducer, but axial

to tangential turning due to backsweep of the impeller under consideration gives rise to the

opposite effect in aft portions of the passage.

Figure 6.6b is a sketch which illustrates the nature of these curvature induced secondary

motions. Specifically, the three dimensional cross flow associated with axial to radial

turning of the pressure side blade boundary layer (A abo-, e) is illustrated.

C) Coriolis "pipe" force or "eddy" arising from -2w0 X We component of coriolis

acceleration (gives rise to slip velocity; see performance discussion below).

D) Coriolis "spin" force arising from -2) X W component of coriolis acceleration.

The dominant flow feature in centrifugal compressors is the so c- d "jet-wake"

structure which forms near the shroud in all impeller flows. Cross flows which are
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gure 6.6 Qualitative psen on of secondary motions pesent i a centrifugal

compressor impeller.

a) Sense of curvature and rotation induced motions :

A) Secondary flows arising from axial to radial turning of blade boundary layers.

B) Secondary flows arising from axial to tangential turning of endwall boundary layers.

C) Coriolis "pipe" force.

D) Coriolis "spin" force.

b) qualitative sketch of pressure surface crossflow arising from axial to radial turning of the

meridional flow.



163

induced by axial to radial turning of the blade boundary layers (effect A above), accumulate

low momentum boundary layer fluid into the shroud region near mid-passage. Typically,

the pressure side vortex is stronger than the suction side counterpart, of this vortex pair,

labelled A in Figure 6.6a. For this reason, the location of this region of low energy fluid is

typically closer to the suction surface. As discussed by Eckardt (1976) and others, this

pocket of low momentum fluid forms approximately halfway through the impeller channel.

It typically grows to fill a significant portion of the midpassage region, though accounts for

a significantly smaller percentage of total mass flow. This "wake" flow introduces

significant blockage and thereby acceleration of the surrounding high momentum fluid,

termed the "jet" flow. In the impeller investigated experimentally by Eckardt, this jet-wake

structure persisted through to the exit of the impeller.

Additionally, tip clearance flow can significantly alter the flow pattern in

centrifugal compressor impellers. Specifically, some 10 % of the total mass flow passes

through the tip gap, driven by the pressure gradient between suction and pressure surfaces.

Typically this leakage flow gives rise to a strong vortex, whose sense is opposite the main

flow direction, and which strays into the adjacent passage and interacts with the wake flow.

Lastly, the direct influence of streamline curvature and system rotation on the

structure of local turbulence has been attributed to the formation and persistence of the

wake. Specifically, concave curvature along the shroud tends to stabilize the turbulence

locally, which should in turn lessen the resistance of the developing shroud boundary layer

fluid from being transported away from the shroud towards the hub (transverse flow

separation). Additionally, the relatively distinct boundary often observed between wake

and jet flow, may be attributable to locally reduced turbulence mixing. This reduction

could arise from damping near the shroud due to concave curvature and/or damping near

the suction surface due to rotation in the radial portion of the impeller.
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In short, the variety of physics which begin to manifest themselves in the aft

sections of an impeller are very complex. Since the performance of the machine is critically

dependent on these phenomena, especially the nature of exit flow, full Navier-Stokes and

turbulence modelling methods, which can provide more accurate prediction and

understanding of these phenomena, are useful to the engineer.

Often in unswept impeller computations, relative velocity vectors are used to

illustrate the development of secondary motions. In machines with blade sweep, the choice

of an appropriate viewing projection can be difficult, and will not in general align with a

local grid slice. Accordingly, velocity vector plots are not very useful in interpreting the

secondary motions in the impeller under consideration here. Normalized helicity density is

used in this chapter to help interrogate the cross stream physics.

H=W.

Normalized relative helicity, i4 H, is a useful parameter in three-

dimensional postprocessing of vortical flow solutions. Levy et al. (1990) recently itemized

the advantages of normalized helicity as:

1) Vortices can be distinguished from boundary layers (which have large vorticity but

W Cis small).

2) Helicity is a scalar, and as such does not introduce the ambiguities mentioned above that

velocity and vorticity vectors give rise to.

3) The sign of the helicity indicates the rotational sense of a vortex.

4) Maxima in normalized helicity correspond to vortex cores, and as such provide a

convenient means for tracking developing vortices.
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6.2 Flowfield Calculation Using the k-E Model

The first set of results to be presented are for a solution obtained using the low

Reynolds number k-e model. The standard quasi-one-dimensional flow initialization

procedure is a very poor initial guess for this flowfield, since centrifugal pressure rise

dominates the rotational inviscid physics in this machine, but is not accounted for in such

an initialization. Only by running the half grid problem (30 x 14 x 14) and enforcing inlet

mass flow rate, through the course of iteration, was it possible to obtain a converged

solution from the quasi-one-dimensional flow initialization. The converged coarse grid

solution was then interpolated onto the more refined grid, thereby providing a good

initialization.

The convergence history for the full scale computation is shown in Figure 6.7.

The code was run for 5000 iterations, at which point the RMS density and turbulent kinetic

energy residuals had dropped nearly four orders of magnitude. (Note that the total number

of supersonic points (MreI > 0) in the computational domain remained nearly unchanged in

early iteration due to the coarse grid solution initialization). The solution required

approximately 2.5 CPU hours on a Cray Y-MP. The turbulence intensity was arbitrarily

set to 3 % , since no experimental value was available, and the artificial dissipation was

scaled by the reference velocity a..Mre! . for these computations.

In Figure 6.8, circumferentially averaged shroud static pressure is plotted against

time averaged static tap measurements made by Krain (1988). The agreement is very good

except in the immediate vicinity of the impeller inlet, due most likely to the cusped leading

edge, which is relatively thick compared to the blade spacing there (refer to Figure 6.5).

In Figures 6.9 and 6.10, predicted meridional velocities (Wmenid = NWx + W)
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are compared with laser measurements at planes I and II, which correspond to 0 % and

30 % chord as measured along the shroud (refer to Figure 6.4). Pitchwise flow turning is

significant at the impeller inlet, since the blades are quite thick there (elliptic effect, as for a

turbine blade). The resulting blade-to-blade pressure gradient gives rise to larger

meridional velocities near the blade suction side, along the span. This is captured by the

simulation, as seen in Figures 6.9 and 6.10. Rapid axial to radial turning near the impeller

inlet gives rise to a positive gradient in meridional velocity in the hub to shroud direction as

seen in both the experimental and computational results in Figure 6.10 (most notable if

contrasted with inlet profiles in Figure 6.9).

In Figure 6.11, solution contours of normalized relative helicity are plotted at a

grid slice corresponding to Plane M (48 % chord). In this figure, high positive values of

normalized helicity (dark shading) correspond to a streamwise vortex (into page), whereas

high negative values correspond to negative streamwise vorticity. The secondary motions

arising from axial to radial turning of the blade boundary layers (effect A, Figure 6.6a) are

clearly evident. Also, the tip clearancc vortex is scen *o have migrated well into the

midpitch region near the shroud.

Figure 6.12 shows the meridional velocities at 50 % chord. Both experiment and

computation clearly show a region of significant momentum deficit near the shroud. This

is due primarily to the accumulation of low momentum boundary layer fluid arising from

the dominant secondary motions discussed previously. Tip clearance fluid is also

accumulated in this "wake" region. It was found that the level of agreement between

experiment and computation in this region was only achieved when the number of grid

points in the tip gap was increased from four to eight, and the grid was no clustered in the

spanwise direction there (refer to Figure 6.5c). This reinforces that both axial to radial

turning induced secondary motions and tip clearance flow play an important role in the
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formation of this low momentum fluid region. The Navier-Stokes solution overpredicts the

extent of the wake region, in both the blade to blade and shroud to hub directions. In

Figure 6.13, meridional velocity contours are plotted. Agreement between computation

and experiment is good, although it appears that the predicted wake flow has displaced the

high momentum inviscid core, or "jet," fluid towards the suction surface prematurely.

Figure 6.14 shows the normalized relative helicity contours at 65 % chord (Plane

TV). The jet-wake structure is fully formed at this location. Still evident are th, -ounter

rotating secondary vortices. The tip clearance vortex is clearly distinguishable, and appears

to have entrained some of the fluid from the pressure side half of the passage, "dragging"

some high streamwise vordcity fluid towards the suction side. Meridional velocities

compare quite well at Plane IV, as shown in Figure 6.15. Most notable is that the

experimental and computed wake flow has extended to midspan. The blockage that this

fluid provides is seen to accelerate the higher momentum jet fluid towards the two blade

and hub surfaces. Peak values of meridional velocity occur near the suction side-hub

comer. These features are evident in the meridional velocity contours provided in Figure

6.16, where it is also seen that the location of low meridional velocity near the shroud has

migrated towards the suction surface.

The results at 65 % chord, presented in the previous paragraph, illustrate that the

wake flow has fully manifested itself at this location. It is interesting to compare a highly

referenced qualitative sketch provided by Eckardt (1976), with normalized relative helicity

solution contours. In Figure 6.17a, Eckardt's sketch, which serves to illustrate the variety

of phenomena which contribute to the formation of the jet-wake flow, has been adapted. A

solution grid slice at 68 % chord was chosen for comparison in Figure 6.17b, since the

salient features of the wake flow correspond well with Eckardt's sketch at this location.

This comparison clearly serves to illustrate the appropriateness of the present Navier-
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Experimental contours (top), computed contours (bottom).
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Stokes procedure in reconciling these flow physics.

At 80 % chord (Plane V), several channel vortices are clearly distinguishable as

seen in Figure 6.18. One of these, of positive streamwise vorticity, has migrated from the

pressure side half of the channel (refer to Figures 6.11 and 6.14). The tip clearance vortex

has continued to migrate closer to the suction surface. The meridional velocity profiles in

Figure 6.19 illustrate that only the near hub region shows inviscid flow features, the rest of

the passage flow being highly distorted by the variety of interacting secondary motions.

This is captured well by the numerical simulation, as seen by comparison of the

experimental and computational results in Figures 6.19 and 6.20.

Near the impeller discharge plane (Plane VI, 98 % chord), the entire passage flow

is encompassed by a very complex shear layer. Figure 6.21 shows normalized relative

helicity contours in this plane. A variety of nearly indistinguishable secondary flow

structures are present. Experimentally measured exit velocities are rather smooth, though

clearly distorted across the discharge area. This is illustrated in Figure 6.22.

Computational results at this measurement plane are poor, due to the "pinched" wailing

edge. Meridional velocity profiles for the discharge plane are provided in Figure 6.23.

Computed and measured performance parameters are presented in Table 6.1.



180

0.45

0.00

-0.22

-0.45

-0.67

-0.90

Figure 6.18 Conputed nosmmlized relative helicity contoirs at solution grid

slice correponding to L2F data acquisition Plane V.



181

0.35i R 0.

0.00reR .

0.0 1.0.5

suto

igue 619 Mridonalvelcityproilesat 2F dta cqusitinfPae V

Exe.3e5a -esrmn. (Rmol) coptdvaus(oldln)



0-

0~U~20 
i~~~v1YcnOI~a 

2 aaaqi~ 
~f~V



183

0.90

0.23

0.45

-0.67

-0.90
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slice corresponding to L2F data acquisition Plane V.
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Figure 6.23 Meridional velocity contours at L2F data acquisition Plane VI.

Experimental contours (top), computed contours (bottom).
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Table 6.1. Comparison of Performance Parameters for

Transonic Centrifugal Compressor Stage

Mass Averaged Flowfield Measuredb Computed % Difference

Parametera (k-e model)

Pressure Rise, 4.00 3.80 5.0
P0, diffuser exit

P0, impeller inlet

Slip Factor, 0.85
V6 . impeller exit

Uimpeller exit I

a b Krain (1988)

*pW. dA

J PW. dA

6.3 Flo/field Calculation Using the Hybrid k-r/ARS Model

In order to obtain some qualitative measure of the importance of Reynolds stress

anisotropy on the flowfield structure for this case, and to examine the numerical robustness

of the hybrid model in flows where significant extra strain rates are present, the model was

used to compute the present impeller flowfield. In Figure 6.24, a convergence history for

these calculations is presented. The 5000 iteration k-e solution discussed above was used

to initialize the ARSM run (compare Figure 6.7). The jump in residuals at iteration 5000

corresponds to a solution restart with the new model. Specifically, the hybrid model was

run for 2880 iterations, with the production by rotation tensor, Rij in equation [2.14], set to

zero (Q = 0 in equation [3.60]). This solution was run until the RMS density residual
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Figure 6.24 Convergence history for the tee computations presented. Features

labelled a and b correspond to solution restarts using alternate turbulence models.
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recovered to a four decade drop. The production by rotation terms were then implemented

and the code was run for another 1480 iterations where again the log of the density residual

had dropped to -4. All three solutions are compared below. It is noted that the "peaks" in

density and turbulent kinetic energy residual which develop with increased iteration count

occur at 100 iteration intervals, corresponding to solution restart frequency, not the

frequency with which Reynolds stresses are recomputed. The overall convergence rate of

the ARSM solutions are not significantly deteriorated, and it is hoped that the mechanism

which causes these features can be identified and fixed.

In Figure 6.25, the contour of Y+match = 200 for the hybrid model is presented for

a grid slice at 75 % chord, to illustrate the proximity of the hybrid model matching location

to the passage surfaces.

Figure 6.26 shows converged meridional velocity profiles at laser Plane V for the

1) k-e (solid line), 2) hybrid, Rij = 0 (long dash), 3) hybrid, Rij * 0 (short dash) solutions.

The meridional velocity profiles are seen to be very similar. However, the near wall cross

flow velocities and wall shear stress distributions were seen to vary substantially for the

various models.

Figures 6.27 shows near wall cross flow velocity profiles near the exit of the

impeller (90 % chord). Figures 6.27a and 6.27b are profiles taken at midspan on the

suction and pressure surfaces respectively, whereas Figure 6.27c is taken at mid-hub. In

these plots, the square, circular and triangular symbols correspond respectively to the k-E,

hybrid, Rij = 0 and hybrid, Rij * 0 solutiors. Qualitatively, these spanwise flows seem to

have been notably influenced by turbulence amplification effects on the developing passage

flow boundary layers, as seen by the differences in the cross flow velocity profiles in these

figures.
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Y+match = 200

Figure 6.25 Converged hybrid model solution contours of y" on a grid slice at 75 %

chord. The precise location of yah = 200, the value used in the hybrid solutions,

is indicated.
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Figure 6.26 Meridional velocity profiles at L2F data acquisition Plane IV.

Comparison of solutions using three turbulence models: low Reynolds number

k-E model (solid), hybrid model, Rij = 0 (long dash), hybrid model, Rij * 0

(short dash).
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Figure 6.27 Near wall relative crossflow velocity profiles at 90 % chord.

a) midspan on suction surface, b) midspan on pressure surface, c) mid passage

on hub. Comparison of solutions using three turbulence models : low Reynolds

number k-e model (square), hybrid model, Rij = 0 (circle), hybrid model,

Rij 0 0 (triangle).
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In Figure 6.28, predicted skin friction versus chord is plotted for the three

solutions at midspan on the suction surface, mid span on the pressure surface, and at mid-

hub locations. In this figure, the solid line corresponds to the k-e model, the long dash to

the hybrid model without rotation terms, and the short dash to the hybrid model with

rotation terms. Choice of model seems to have little effect on suction surface shear stress.

The effect of extra strain rates on the hybrid model do seem to significantly influence

developing boundary layers along the hub and pressure surfaces.

In Figure 6.29, normalized relative helicity contours, at 68 % chord, are compared

between the k-e solution and the hybrid model solution, with rotation terms included.

Secondary motions are qualitatively very similar in this region, where the jet-wake flow is

fully realized. Quantitative differences are certainly noticeable. These results do not

indicate that the influence of curvature and/or rotation on turbulence damping in the shroud-

suction surface region significantly influence the structure of the wake.

Table 6.2 compares predicted performance parameters between the three modelling

approaches.
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Figure 6.28 Predicted sin friction coefficient vs. dimensionless streamnwise

distance along shroud. Comparison of solutions using three turbulence

models : low Reynolds number k-e model (solid), hybrid model, Ri = 0 Oong

dash), hybrid model, Ri * 0 (short dash).
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Figure 6.29 Computed normalized relative hehicity contours on a solution grid

slice at 68 % chord. Comparison of solutions using two turbulence models:

low Reynolds number k-e model (bottom), hybrid model, Rij * 0 (top).
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Table 6.2. Comparison of Predicted Performance Parameters for

Transonic Centrifugal Compressor Stage, Using Different Turbulence

Models

Mass Averaged Flowfield Computed Computed Computed

Parametera (k-e model) (hybrid,Ri = 0) (hybrid,Rii * 0)

Pressure Rise, 3.80 4.01 3.92
PO, diffuser exit

PO, impeller inlet

Slip Factor, 0.85 0.86 0.86
V 0, impeller exit

Uimpeller exit

The slip factor, which arises due to coriolis "eddy"acceleration even in the absence

of shear is seen to be negligibly affected by turbulence model choice. Predicted stage total

pressure rise varies by as much as 5 % with different turbulence modelling.

As is clear from the foregoing results, the flow in this machine is very complex.

As such, it is difficult in this case to make quantitative arguments as to the direct influence

of the turbulence model on boundary layer structure. Specifically, it would be too bold to

conclude that local extra strains in the algebraic model influence local boundary layers

directly based on the results presented here. This is because local boundary layer physics,

especially near the exit, are strongly dependent on the history of the entire developing

passage flow.

What can be concluded from the results of this section are that extra strain rates are

seen to influence the meridional flow physics only slightly, through local turbulence

structure modification. Secondary motions, wall shear stress and total pressure rise
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performance show increas l sensitivity to modelling choice. In the opinion of the author,

the proposed hybrid k-e/ARS model is a sensible engineering approach to computing

complex flows where strong extra strains are present. This approach is computationally

efficient, reconciles the low Reynolds number k-e form with the algebraic stress modelling,

and seems to be numerically stable. However, further validation work is still needed,

specifically the treatment of flows with isolated extra strain rates.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

A new three-dimensional explicit Navier-Stokes procedure, which incorporates

two-equation turbulence modelling has been developed and presented in this thesis.

Several analyses and techniques which have enabled convergent and accurate simulation of

high Reynolds number turbomachinery flows on highly stretched grids have been

developed and presented. These include extensive stability, order of magnitude and

numerical verification studies applied to the discrete system of seven governing equations,

with emphasis on turbulence modelling. A compact finite difference flux evaluation

procedure was presented. Local velocity and flux Jacobian scalings of artificial dissipation

operators were devised and applied. A hybrid low Reynolds number k-a/high Reynolds

number algebraic Reynolds stress model was developed. The procedure has been applied

to a variety of turbomachinery flowfields, across a wide range of Mach numbers. The

results of these computations were presented and interpreted, and indicated that the method

provides accurate and convergent simulation of turbomachinery flowfields.

A study of the stability of the coupled system of seven transport equations,

including a low Reynolds number form two-equation turbulence model, was presented.

The linear analysis procedures, order of magnitude analyses and subsequent numerical

verification studies presented, provided several conclusions. Most notable are three items

which directly relate to the turbulence transport modelling. Specifically, it was shown

through stability and order of magnitude analysis, and numerical verification , that the

turbulence model source terms themselves do not adversely affect the stability of the

explicit numerical procedure, anywhere in the flowfield, except in early stages of iteration.
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This is a result contrary to that generally perceived. Secondly, it was shown that

turbulence transport models, which provide large values of effective diffusion in regions

where grid clustering may be high, give rise to dominant parabolic stability limitations,

which must be incorporated in the numerical procedure. This is unlike the solely

hyperbolic constraints often sufficient when algebraic eddy viscosity models are used in

time marching Navier-Stokes procedures (point transition specification in these models

preclude large values of eddy viscosity upstream of the blade row). This second item was

clearly demonstrated as a mechanism in turbomachinery blade row computations. In the

opinion of the author, this effect must manifest itself also in unstructured grid

implementations where high local clustering appears well away from wall damping effects,

as for, say, shock capturing. Thirdly, specific near wall modelling terms which appear in

the stability analysis were identified, which upon inspection, reveal the adverse stability

implications of incorporating a dissipation rate model which transports a total dissipation

rate variable. This analysis substantiates claims to this effect which appear in the literature

and have been the personal experience of several researchers, including the author.

Two other results, related to the numerical implementation of the turbulence model,

were investigated and presented. Specifically, implicit treatment of the turbulence source

terms did not improve the convergence rate of the explicit scheme, consistent with the first

conclusion in the previous paragraph. Additionally, terms which account for unstable,

early iteration turbulence model behavior, arising from inviscid initialization procedures,

were identified, and several stabilization procedures that the author has found to be

effective were presented.

The implementation of algebraic and full Reynolds stress closures in complex

aerodynamic flow simulations should increase in the short term. This will be due to the

desire to move to improved modelling, increased digital computer speed and memory, and



199

the onset of radically different designs for which Navier-Stokes methods will be more

critical in analysis. The turbulence model numerical considerations presented in Chapter 3,

and summarized above, should be useful in the move to second order closures for two

reasons. Firstly, the modelled FRS and dissipation rate equation system is similar to the k-

e system in that they are both convection-diffusion transport equations with large non-linear

source terms. Accordingly, some of the procedures and conclusions presented in this

thesis will be applicable. Secondly, in ARS closures, an "anisotropic eddy viscosity" can

be identified, to which the parabolic stability conclusions recalled above are directly

applicable. This conclusion was demonstrated analytically, and numerically verified, in

Chapter 3.

In addition to turbulence model issues, analyses were presented which focused on

the influence of numerical coupling of the mean flow and turbulence transport equations,

system rotation source terms and artificial dissipation on the numerical stability of the

Runge-Kutta procedure. Linear analysis and numerical verification provided that there is

no advantage to numerically coupling the two-equation model system to the mean flow

equation system in regard to convergence, accuracy or performance of the scheme. The

appearance of rotation source terms in the discrete governing equations was found to have

negligible influence on the stability of the scheme for rotation numbers and grids typical of

high Reynolds number turbomachinery rotor computations. It was found useful to include

artificial dissipation operators in the specification of a local timestep in problems where

parabolic stability bounds dominate locally (as in the blade row computations considered)

to avoid ad hoc specification of an operational VonNeumann number which varies with

level of artificial dissipation used.

Some of the limitations of the foregoing stability results were also presented. In

multigrid procedures, the turbulence model and rotation source terms give rise to stability
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limitations which may not be negligible on coarser grids, if complete residuals, including

source terms, are evaluated on these successively coarser grids. Also, the flow physics are

significantly altered by system rotation. Accordingly, system rotation does affect

convergence rates since stationary and rotating flows, through the same geometry, will be

very different (especially in centrifugal machines). The related conclusions presented

thereby only apply to the specification of a local timestep. Lastly, the analyses presented

are local and linearized. As such, the conclusions of these analyses are approximate, and

their usefulness had to be verified, like any engineering approximation, through numerical

application.

Two artificial dissipation issues of importance in high Reynolds number flowfield

computations were presented and discussed. Two scaling functions which accommodate

these considerations were presented. Specifically, an alternative flux Jacobian eigenvalue

scaling was introduced and extended to three dimensions. This scaling reduces dissipation

levels in the directions normal to grid stretching without increasing dissipation levels in the

same direction as the grid stretching (nominally, the wall normal direction). It was found

to be crucial to incorporate this anisotropic eigenvalue scaling in order that a converged

three-dimensional rotor flow solution be obtained on a highly stretched grid. The role of

artificial dissipation in corrupting solution accuracy in near wall regions, where physical

diffusion is important, was illustrated. A local velocity squared scaling which tapers levels

of artificial dissipation to zero near solid boundaries was introduced. It was demonstrated

through numerical experimentation that it is crucial to incorporate this scaling in order that

near wall physics be accurately resolved.

The flux evaluation scheme presented eliminates the metric ambiguity, at the

interface between solid and periodic boundaries, associated with standard finite difference

approaches. This scheme allows for straightforward inviscid and viscous flux evaluation,
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at complex rotor passage boundaries, including periodic cascade and tip gap boundaries,

and the interface between rotating and stationary sections of the hub.

A hybrid low Reynolds number k-Elhigh Reynolds number algebraic Reynolds

stress model was developed. This model reconciles the near wall damping of the k-E

model, with the ability of the ARS model to provide Reynolds stress anisotropies which

arise due to extra strain rates. The formulation of this model and its numerical

implementation and stability topics were presented, and prelir-inary model validation was

provided. The model was found to predict near wall turbulence behavior correctly,

including normal stress anisotropy, and was shown to be stable when implemented

numerically with a local blending function. This model is computationally efficient in full

scale three-dimensional applications because the influence of near wall pressure strain

terms, which are very complicated in three-dimensions, are implicitly accommodated in the

modelled two-equation near wall damping terms. In the opinion of the author, this is a

sensible engineering approach to employing a second order closure in a time-marching full

Navier-Stokes procedure. Specifically, the influence of curvature and rotation on Reynolds

stress anisotropy, which can significantly influence mean flow structure in tr"-bomachines

is incorporated, but wall functions are not used. Therefore, complex near wall three-

dimensional boundary layer physics, which are important in many turbomachines can be

explicitly resolved as well. Though preliminary validation has been provided and

application to full scale turbomachinery computations demonstrated in this thesis, some

further study may be useful. Specifically, the application of the model to configurations

where isolated strains give rise to Reynolds stress and mean flow redistributions should be

further investigated. The computation of a simple shear layer subject to spanwise rotation

is under way, and the prediction of secondary motion of the second kind could be

demonstrated for a square duct calculation.
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Two-dimensional results were presented. Validation of the turbulence models was

provided, and the results of one supersonic and one low subsonic compressor cascade

computations were presented. Flowfield predictions were found to be acceptable for both

cascades except in the aft potion of the subsonic cascade suction surface, due to mean flow

reversal there. Overall cascade performance parameters were well predicted for the

supersonic cascade but not well predicted for the low subsonic cascade, due again to

flowfield unsteadiness as well as turbulence model shortcomings.

The three-dimensional procedure was used to predict the flow in a compressor

rotor. The viscous incompressible flow through a curved duct was predicted accurately, as

verified by comparison of CFD validation-quality pressure and primary and secondary

velocity measurements with computed values. A number of conclusions apply to the rotor

flow computation. Specifically, the viscous flow through a rotor was predicted, including

inviscid regions, the stagnation region near the leading edge, blade boundary layers and

wakes, and spanwise mixing region downstream. Flow losses and loading coefficient

were predicted reasonably well. The flow in the tip region was resolved qualitatively, with

the exception of nearwall streamwise and radial velocity profiles. The effects of rotation

and endwall secondary flow on the radial velocity profiles in the near wake close to the hub

was captured reasonably well. The ability of the code to predict spanwise and lateral

mixing downstream of the rotor was demonstrated. Specifically, the redistribution of

velocities and flow angles was predicted accurately. Additionally, the spanwise

redistribution of losses between the trailing edge and the far wake region was captured

well.

The flowfield in a transonic centrifugal compressor stage (impeller + diffuser) was

computed. The numerical and modelling methodologies provided in this thesis give rise to

a reasonably accurate simulation of this complex flowfield. Specifically, stage pressure
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rise distribution was captured accurately. Also, the secondary motions arising from

coriolis and centrifugal effects and tip clearance flow were resolved with reasonable

accuracy. Normalized relative helicity was helpful in qualifying and tracking some of these

motions. The accumulation of low momentum fluid near the shroud, in the aft portion of

the impeller was captured. This fluid includes that convected from blade boundary layers

by curvature induced secondary motion and tip clearance flow, and accumulates in the mid-

passage region. Near the impeller exit, this fluid extends well into the impeller passage

towards the hub, causing blockage (and hence acceleration) of the high momentum fluid

near the suction surface-hub comer. These physics are evident in experimental L2F

meridional velocity measurements and in the numerical simulation.

The hybrid k-e/ARS model was applied to this flowfield in order to obtain

qualitative measure of the influence of Reynolds stress anisotropy on the developing

flowfield structure in the centrifugal impeller, and to examine the numerical robustness of

the model in flows where significant extra strain rates are present. This is the highest level

of turbulence modelling ever attempted, to the knowledge of the author, in this type of

machine. It was found that extra strain rates influence meridional flow physics and

impeller slip factor only slightly, through local turbulence structure modification. Cross

flows, wall shear stress and total pressure rise performance showed slightly increased

sensitivity to modelling choice. The model was found to be s'able for this computation,

though solution restart anomalies remain to be resolved.

In light of the relatively small difference in predicted meridional physics arising

due to modelling choice, when compared to the differences in computed and measured

meridional flow, geoeti modelling considerations are a priority, in order to provide

improved prediction of these types of flows. Specifically, inclusion of the actual spinner

geometry, though difficult from a grid topology standpoint, should provide more accurate
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inlet hub boundary layer resolution (and thereby the influence of the developing secondary

motions which arise due to the turning and rotation of this shear layer.) More important,

though, is the accurate resolution of the leading edge, trailing edge and tip gap regions.

The "pinched" H-grid approach at these boundaries is most likely the dominant source of

error in these computations, since blades are thick compared to passage dimensions, and

the tip clearance flow is so important in centrifugal impellers. Lastly, as mentioned above,

further validation is required for the turbulence models used, before stronger conclusions

can be drawn in regard to application of the model to a flow as complex as that in a

centrifugal compressor.
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